Slavisa B. Presi¢

m-M CALCULUS

(Second revised edition)

m-M CALCULUS

Matematicki institut
Beograd
1997

ISBN 86-80593-29-X

Slavisa B. Presic



o P
A LAY 99/9 ey

Z}[}‘" e?L'Z' pr@faa i1

2'7/(("98 p . ) b
talop ke

Slavia B. Presié

m-M CALCULUS

(Second revised edition)

Matematicki institut
Beograd
1997



CONTENTS

BN e

INTRODIUCTTON ¢ ct s 553 prapmsiomamas s 5655550858+ o wmia s s raiscasamsosssss o o + @ samis 1
m-M ALGEBRIA . ... ..o o cvnmonnnss s 558060055 oms S@asssi s deese 5 555 s s 3
SYSTEM OF EQUATIONS, SYSTEM OF INEQUALITIES..... 21
n-DIMENSIONAL INTEGRALS, INFINITE SUMS;

THEIR m-M PAIRS ... i 41
m-M PAIRS OF THE FIRST ORDER FORMULAS;

SET-THEORETICAL INTERPRETATION ................. 49
SOLVING A FIRST ORDER <, < -FORMULA .................... 63
FINDING FUNCTIONS AS SOLUTIONS

OF A GIVEN m-M CONDITION ..o, 79
APPENDIX .. .vummmomnn s s sl biife s 86 5555858878578 58 8000 paaiss 84

REFEREINCES ..o it e e 87



0. INTRODUCTION

This is the second revised edition of the m-M Calculus (see 7.

In this paper we consider the so-called m-M functions, i.e. functions of the form

f:D—=R (D = [a,b1] X ... X [an,b,], wheren >0is any element
of N; and ai,bi (S ]R)
subjected to the following supposition:

For each n-dimensional segment A = lag, Bi] x ... x [an, Bn] C D a pair of
real numbers, denoted by m(f)(A), M(f)(A), satisfying the conditions

(0.1) m(£)(A) £ F(X) < M(f)(A) (forall AC D, X €A)
(0.2) lim(M(£)(A) —m(f)(A)) =0 (where diamA := (¥ (8; — a;)?)1/2)
diamA — 0

is effectively given.

Such an ordered pair (m(f), M(f)) of mappings m(f),M(f) (both mapping the set
of all A C D into R) is called an m-M pair of the function f. We also say that
m(f), M(f) are generalized minimum and maximum for f respectively. With
only a few exeptions, all elementary functions are m-M functions (Lemma 1.4).

The conditions (0.1) and (0.2) are taken as axioms of the so-called m-M calculus
(or the Calculus of generalized minimum and maximum).

A logical analysis of these axioms is given here and, in addition to the other results,
a series of equivalences is proved which enable us to express some relationships for
m-M functions by means of the corresponding relationships for their m-M pairs
(Formulas (4.8), (4.9), (4.10)).

There are many various applications of the m-M calculus, such as

- Solving systems of inequalities, systems of equations (Section 2)
- Finding n-dimensional integrals (Section 3)
- Solving any problem ezpressed by a positive <-formula (Section 5). Among
others
Problem of constrained optimization (Problem 5.2, Problem 5.8)
Problem of unconstrained optimization (Problem 5.1 )
min-maz problems (Problem 5./)
Problems from Interval Mathematics (Problem 5.5)
- Finding functions satisfying a given m-M condition (e.g. functional condition,
or difference equation, or differential equation)
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*As it is well known, by the usual methods of Numerical analysis, assuming certain
convergence condiitons, we aproximately determine, step-by-step, one solution of
the given problem (see [1]-[5]). However, applying the methods of m-M calculus
we approximately determine all solutions of the given problem, and we assume
almost nothing about the convergence. The solutions are, as a rule, sought in a
prescribed n-dimensional segment D. If the given problem, e.g. a system oof some
equations, has no solutions in D, then applying the method of m-M calculus this
can be established at a certain finite step k. The basic methodological idea of the

m-M calculus is:

It gives a sufficient condition Cond(A) which ensures that an n-dimensional
segment A does not contain any solutions of the considered problem P. Ap-
plying this criterion, we reject from the original n-segment D those " pieces”
which do not contain solutions, so that in the limiting case the remaining
”pieces” form the set S of all solutions of the problem P (if indeed there is a
solution of P).

Compairing with [7] this version of the m-M Calculus additionally contains

A linear procedure LS by which one can find a local minimum or saddle point
of the function from Problem 5.1 (see Remark 5.1).

On the disjunctive-optimization problem (see Remark 5.2).

7. Appendix, containing a new, simple proof of the Theorem 4.3, which is
the key theorem of the m-M Calculus.

The author is indebted to M. Agovié who designed several programs concerning
the mn-M Calculus and to Professor M. Raskovié for several valuable comments and
suggestions.

1. m-M ALGEBRA

In this section we state how for a given function f defined by some elementary
term f(z1,...,7a) (see (1.7) and (1.11)) one can, in a finite number of steps,
find an m-M pair. Also we study some general properties of m-M pairs.

1. Throughout this section we shall denote by
D =a1,b1] % ... X [ap,b,] C R"

a fixed n-dimensional segment. The functions we deal with are mainly some m-M
functions f : D — R.

As the first fact notice that from axioms (0.1), (0.2) follows that the function f must
be continuous; i.e. if f: D — R is an m-M function then f must be continuous in
D. 1t is easy to see that in some sense the opposite assertion is also true. Namely, if
f:D — Ris a given continuous function then one of its m-M pairs may be defined
by

(1.1) m(f)(A) = min £(X), M()(A) = max f(X).
Notice that this m-M pair satisfies the following implication
(1.2)  A'C A" = m(f)(A") <m(f)(A"), M(F)(A") <m(f)(A") (A" C D)

Generally, any m-M pair having this property will be called a monotone m-M pair. )
Here and throughout the section we denote by A = [ay, f1] X ... x [an, Br] any

subsegment of D. Further, the set of all such A’s will be denoted by Int(D}. We

point out that formula (1.1) can be used in case of monotone functions. Namely,:
we have the following lemma. :

Lemma 1.1. Let f : D — R be a continuous function, monotone in each of its
arguments. One m-M pair of f, the so-called ideal m-M pair, can be defined by the
Jollowing equalities

m()(A) =min{f(V1),...,f(Var)},  M(f)(A) = max{f(V1),..., f(Van)}
where Vi, ..., Van are all the vertices of A. This m-M pair is monotone.
The proof follows by (1.1) and the fact that f, when X € A, must acheive its

minimum(maximum) at some vertex of A. From Lemma 1.1 we obtain the following
corollary -

(1.3) If f : [a1,b,] — R is a continuous monotone function then one of its m-M
pairs is determined by the equality

1) m(F)A) = floa)y, M(f)(A) = f(Br) if f is nondecreasing
or
(i)  m(f)(A) = f(Br), M(f)(A) = f(en) if f is nonincreasing

As another corollary we list the following table in which f denotes the function
defined by the given expression and (m(f)(A), M(f)(A)) is one m-M pair of f.
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Table 1.1
Function f m(f)(A) M(f)(A) Under condition
c c ¢ C is a constant
Ty (841 131 ’
T + T2 a4+ as B+ B
—T1 - -y
1/z1 1/4 1/ay a; >0
Ty T2 min(a;ag, a1 fa, max(a g, 152,
0P, a2f:) a2y, 0202)
min(z1,z2) min(ay, az) min(f, B2)
m&X(zl,$2) ma‘x(al)a2) max(ﬂl:ﬁ?)

In connection with formulas (1.1) we also emphasize the following fact. If f is any
m-M function then for each its m-M pair the foliowing inequalities

(14) m(£)(8) < min f(X), M) 2 pax S(X)

hold. More precisely said we have the following lemma.

Lemma 1.2. Let f : D = R be a given continuous function and let £1,e2 :
Int(D) = R be any given nonnegative functions with the property

s — I A) =
dialrlnrg—»() =1 (A) dim:xrg—m 52( ) :

Then one m-M pair of the function f can be defined by the following equalities
* — 1 — =
() mNQ) = min f(X) -a(A), M(F)A) = max f(X) +e(a)

Moreover, each m-M pair of f can be represented in the form (*)

Now let f: D — R be any m-M function. In connection with it we introduce two
functions (mf), (M f) of 2n arguments. These functions are only partialy defined.
Namely, if A = [a1,01] % ... X [an, Ba] is any subsegment of D then, by definition,
we have:

(1.5) (mf)(ar, B, s an, Bn) :=m(f)(A),  (Mf)ar, B,y om, Br) 1= M(F)(B)

In other words if we like to consider m(f)(A) and M (f)(A) as functions of a1, fi,
.1y Qn, Bn then we can do it using the functions (mf), (M f).

Generally speaking, regarding the notion of monotony we have the following fact

(1.6) If (m(f), M(f)) is a monotone m-M pair then the functions (mf), (M[) are
also monotone in each of their arguments.

Lemma 1.3. Let the functions f,hi,....,hr : D = R and
G :[A1,B1] X ... X [Ag, Bk] + R (Ai, B; are given reals)

4

satisfy the following equality

F(X) = G(h1(X), ... hi(X)) (for all X € D)
Suppose also that for all segments A C D the inequalities
*) A Sm(h)(A), M(h:)(A) < B; (i=1,..,k)
are fulfilled. Then one m-M pair of the function f is defined by the equalities
m(f)(A) = (mG)(m(h1)(A), M(h1)(A), ..., m(he ) (A), M (hy)(A))
M(£)(A) = (MG)(m(h1)(A), M(h1)(A), ... m(he)(A), M (hi)(A))

providing that all m-M pairs of the functions hy, ..., hi, G standing on the right
hand side of these equalities are known.

Proof. Let A C D and X € A. Denote the product
[m(h1)(A), M(h1)(A)] X ... x [m(hi)(A), M (i) (A)]
by A’. Then we have
F(X) = G(hs(X), ..., hi (X))

S M(G)(A') = (MG)(m(h)(A), M (B1) (D), ...;m(hi ) (A), M (hy)(A))
Similarly the inequality

f(X) 2 (mG)(m(h1)(A), M(h1)(A), ..., m(hg)(A), M (hi)(A))
can be proved. Thus axiom (0.1) is satisfied. Further:

limgiama—o [M(G)(m(h1)(A), M (hi)(A), ..., m(h)(A), M (R )(A))
=m(G)(m(h1)(A), M (h1)(4), ..., m(h ) (A), M (Rt )(A))]
= limgiama—o (M(G)(A") —=m(G)(A")) =0 (For limA' = 0)

Consequently the axiom (0.2) is satisfied, which completes the proof.

(**)

Remark 1.1. Note that Lemma 1.3 is compatible with the monotony property.
Na_mely, if m-M pairs of the functions hy, ..., hy, G are monotone then the m-M
pair of the function f determined by the lemma is monotone too.

Indeed, let A” C A’ C A. Then, using (1.6) and the given assumptions we have
m(f)(A") = (mG)(m(h1)(A"), M (k1) (A"), ..., m(he) (A"), M (hi) (A"))

2 (mG)(m(hy)(A"), M(h1)(A"), ..., m(hi)(A"), M (ke )(A"))

=m(f)(4’)
In a similar way we can prove that: M(f)(A") < M(f)(A"). Consequently, the
pair (m(f), M(f)) is monotone.
Let now, f,¢ : D — R be any two m-M functions. Using Table 1.1 and Lemma 1.3
it is easy to conclude that for their sum h: D -+ R -

hMX) := f(X)+ g(X) (X eD)
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one m-M pair can be determined by the following equalities

m(h)(A) = m(f)(A) + m(g)(A), M(h)(A) = M(f)(A) + M(g)(A)
According to this in the m-M algebra one recursive definition reads
() mf +9)(A) =m(f)(A) +m(g)(D), M(f+g)(A)=M(f)(A)+M(g)(A)
by which?) an m-M pair of f + g is defined by the m-M pairs (m(f)(A), M(f)(A))
(m(g)(A), M(g)(A)) of f and g. Next, denote by
(17) Term(R, Ty ey Ty +, 05— 2k+\1/7 €Xxp, SiIl, €os, mina max)
the set of all terms built up from?

the variables zy, ..., T, symbols of some real numbers and functional symbols
+,*, =, 4/, €xp, sin, cos, min, max where k > 0 may be any natural number

Assuming that f, g can be any such terms and that A = [a1,61] X ... X [an, Bn]
can be any p-dimensional segment?®) we have the following recursive definition of
the so-called general m — Mpair (of any term f belonging to set (1.7).

Definition 1.1.
(i) m(C)A)=C, M(C)(A)=C, (C is a constant)
m(z;)(A) = oy, M(z;)(A) =5, (i =1,...,n)
(ir) m(f+g)(A) =m(f)(A) +m(g)(A), M(f +g)(A) = M(f)(A) + M(g)(A),
(i) m(—f)(A) = -M(f)(A), M(-f)(A) = —m(f)(4Q),

() m(f-9)(A) = min(m(f)(A)m(g)(A), m(f)(A)M(g)(A), o
M(F)(A)m(g)(A), M(F)(A)M(g)(A))
M(f - g)(8) = max(m(f)(A)m(g)(A), m(f)(A)M(g)(A), y
M(F)(D)m(g)(A), M(f)(A)M (g)(A))

(v)  m(min(f,9))(A) = min(m(f)(A), m(g)(A))
M(min(f,9))(A) = min(M (£)(A), M(g)(A))
(vi) m(max(f,9))(A) = max(m(/)(A), m(g)(A))
M(max(f, g))(A) = max(M(f)(A), M(g)(A))
(vit) m(*/F)A) = *5/m(f)(A), M(*/F)(A) = *%/M(F)(A)
(viit) m(exp f)(A) = expm(f)(A), M(exp f)(A) = exp M(f)(A)
(iz) m(sin f)(A) = m(f)(A) = M(f)(A) +sinm(f)(A)
M(sin £)(A) = M(f)(A) — m(f){A) +sin M(f)(A)
(&) mlcos £)(A) = m()(A) ~ M(7)(A) +cosm(F)(a)

DBut, it is not true that generally for each m-M pair of the sum f + g exist some m-M
pairs for f, g such that equalities (*) hold

2)The symbol ~ is taken as an unary functional symbol. According, the difference z —y is
introduced as z + (—y).

3)Thus it is not supposed that A C D.

M(cos f)(A) = M(f)(A) = m(f)(A) +cos M(f)(A)

As it is well-known to each term f belogning to the set (1.7) one can correspond
the unique function®) f:R"™ — R in the standard way.

According to the Table 1.1 and Lemima, 1.3 the left-hand sides of each of equalities
(14)-(viii) determines one m-M pair of the functions f + ¢, ~f, f - f, min(J, 9),
max(f, g),exp f respectively by means of the m-M pairs of the functions f, g. A
similar fact holds for equalities (iz), (z) due to the following identities

(1.8) sinz = (z+sinz) —z, cosz=(r+cosz)—z

by which the functions sine and cosine are represented as differences of two mono-
tone functions. '

Note also that repeated application of this definition always produces monotone
pairs. This follows from the fact that by part (i) of Definition 1.1 one monotone m-
M pair is introduced and that other equalities in Definition 1.1 are compatible with
monotony property (see Remark 1.1). In such a way we have proved the following
lemma.

Lemma 1.4 Let f : R* = R be a function defined by a term f(x, s Tp,) belonging
to set (1.7). This function is an m-M function. Employing Definition 1.1 one of
its m-M pairs can be effectively found in a finite number®) of steps. The obtained
m-M pair is monotone.

For illustration we give the following examples
Example 1.1. Let f be a polynomial function defined by the equality of the form

F@1y oy ) = G(Biyores B) = By oy )
where g(z1,...,2n), h(21,...,Z,) are polynomials having positive coefficienis only.
Then one m-M pair of f is determined by the following equalities
m(f)(A) = glar, .y an)=h(Br, ... Bn), M(F)(A) = g(By, ..., Ba)~h{as, ..., n)
(A = [alyﬂl] Xy N [Qrzv ﬂn})

providing thet ay, ...,a, > 0.

Examiple 1.2. According to the identity |z| = max(z,—2z) from Definition 1.1
one can casily deduce the following equalities

m(lf)(A) = max(m(£)(A), ~M(£)(A)), M(f[)(A) = max(M(£)(A), ~m(f)(A))

2. In m-M calculus we shall frequently be concerned with dividing some given
segments of reals into certain smaller " pieces”. In connection with it we introduce

“)To be more precise we can denote this function by some new symbol, for instance f.
Then its definition would read

J(@1,...,v) = Value of term f(z1,...,zn) (for any z1,...,zn € R)

5) As a matter of fact this number is equal to the number of all functional symbols occuring
in the term f(z1,...zn).



the so-called cell-decomposition of a given segment [a, b] C R. Any such decompo-
sition D is an infinite set of certain segments [a’,d'] C [a,b], the so-called cells of
the decomposition, where to each cell one of the numbers 0, 1, 2, ..., the so-called
order of the decomposition, is ascribed. In addition the following conditions are
supposed

(1.9) (i) [a,b] €D
(i)  For each® r € N there exists a finite number of cells in D having the
order r. The segment [a, 8] is the unique cell of order 0.
(ili) The union of all cell of order r is [a, b].
(iv) The interiors of two different cells of the same order r are disjoint.
(v)  If d(r) denotes the maximum of length of all cells of order r the equality.

g, dr) =0

holds”.
A cell-decomposition D is called a cell-tree if the following condition is fullfiled

(vi) TFor each cell C, € D of order (> 0) there exists a unique cell Cp_; € D
of order 7 — 1 such that C, C C,_;.

One example of cell-tree is the so-called diadic tree. Its cells of order r are segments
[, 8] C [a, b] defined by the equalities of the form

a=a+k(b-a)-27", B=a+(b-a) 2"

where k can be any element of the set {0,1,..,2"—1}. Notice that by the definition
of cell-decomposition for each decomposition D of the segment [a,b] the following
fact holds

(1.10)To each point z € [a,b] at least one sequence (Cr(z)) of r-cells®) is related
such that the following conditions

(VreN)z € Cp(x)

is satisfied
Any such sequence is called a cell sequence of z. In the sequel we shall frequently
use the following definition

Definition 1.2.

1% Let Dla, b] be a cell-decomposition of the segment [a,b] CR. Then the set of
all r-cells of the decomposition is denoted by D, [a, b].

2°  Let D = [a1,b1] % ... x [an, ba] C R™ be an n-dimensional segment and let
Dlai, bi] be some cell-decompositions of the segments [ai,b] (¢ = 1,..,n).

6)N is the set of all nonnegative integers 0, 1, 2, . ..

")Obviously the notion of decomposition is that appearing in the ordinary definition of
Reimann integral.

8)Instead of "cell of order 1 we say briefly ”r-cell”.
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Then the sets D(D), D(D) (v is a fized element of N) are introduced by the
following equalities

DT(D) = {Pl X, see X Pn|P1 L= 'Dr[al,bl], ...,Pn € Dr[an, bn]}
D(D) = U,enDy (D)
respectively.

3. Let us now extend the set (1.7) by allowing the set of functional symbols to
contain also the following new symbols

1/, arcsin, In, ¢, (k> 1,k€N)
This new term set will be denoted by
(1.11) Term(R,z1, ..., Tn, +, -, —, €xp, sin, cos, min, max, 1/, arcsin, In, \k/)

If t(zq, .., ) is any element of this set then in the standard way one can correspond
to it one function. But, in general such a function is defined only for those values
(z1,.-,zn) € R™ which satisfy the corresponding definition-condition Cond(1), to
be defined bellow.

Denote by P = {p1,...,pa} the set of all terms such that 1/p1, ..., 1/p, are all
subterms of the term ¢ having the form 1/p, where p is a term. Similarly let

Q = {(11,---1111-}» R= {rla--'yrc}v S= {51;---1511}
be the sets of all terms such that
arcsingy, ..., arcsingy, Inry,...,lnre, %/57,.., /55 (k> 0,k € N}

are all subterms of the term ¢ having the form arcsing, Inr, %/s respectively. Some
of these sets P, @, R, S may be empty. Then we have the following definition

(1.12) Cond(t) is the conjuction of the following conditions

b1 75 0, -3 Pg '_}’é 0, {qll < 17---,]%[ <lrm > 0yu0ny7e > 0,51 > 0:"':3d >0

Denote by Dom(t) the set of all X € R™ satisfying the condition Cond(t).
So, the following problem:

(1.13) Determine the set Dom/(t)

appears.
A bit later we shall consider that problem under the following additional condition

($1, ...,En) eD

where, as before D = [a1,b1] X ... X [an, b,] C R™ is n-dimensional scgment.
Now bearing in mind the corresponding definition-condition about the new func-
tional symbols we extend Definition 1.1 by this addendum

9



Definition 1.3.

(zi) m(1/f)(A) =1/M(f)(A), M(1/F)(A) =1/m(f)(A),
i 0 & m(f)(A), M(f)(D)]

(zii) m(arcsinf)(A) = arcsinm(f)(A), M(arcinf)(A) = aresinM (f)(A),
; if =1 <m(f)(A) and M(f)(A) <1

(ziir) m(In f)(A) = Inm(f)(A), M(ln f)(A) =1In M(f)(A),
if m(f)(2)>0

(iv) m(T)(8) = YmPB), M(YA) = YD), (k> 0,keN)

if m(f)>0
Bearing in mind the conditional character of Definition 1.3 one must be careful in
using it.
Suppose now that A = [ay,B1] X ... X [an, Bn] C R" is any n-dimensional segment.
not necessary a subset of D, and that f is a function defined by certain teiin
belonging to set (1.11). By means of Definition 1.1 and 1.3 we can recursively,
step-by-step, try to determine a pair of numbers m(f)(A), M(f)(A). With more
details this procedure can be described as follows.

(1.14)We start by using equalities (i) and after that, if it is needed, according to
the structure of the term of the function f we step-by-step use one of the
equalities?) (ii), (iii), ..., (xiv). Then, whenever we meet some subterm of one
of the form

1/t,arcsint, Int, ¥/1, (k>0,k¢ N)

we first check whether the corresponding condition from Definition 1.3, i.e.
one of these

(1) 0 [m(D)(A), M()(A)], (ez) —1<m(t)(A)and M(t) <1,
(c3) m(t)(8) >0, (ecs) m()(A) 20

respectively is satisfied.

The procedure halts if that condition, let us say (c;), is not satisfied. In such
a case we shall say that the procedure has stoped prematurely. At this halting
step we also check whether the following additional condition (cf):

() m(e)(A) = M@H(A) =0
(cy) m(t)(A) > 1 or M(E)(A) < -1
(c5) M(1)(A) <0
(ch) M(£)(B) <0

respectively is satisfied.
In the connection with this procedure we introduce the following definitions!®,

9 As a matter of fact this procedure is quite similar to that of computing the value of some
given algebric expression in which eventually some operators are only partialy defined.

10)We use the terms f-solutional, f-indetermined, f-feasible because of the similarity
with the notions solutional, indetermined, feasible (see Definitions 2.1, 2.2)
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Definition 1.4. An n-dimensional segment A is

19 f-solutional if the procedure (1.14) does not halt prematurely

20 f-indermined if the procedure (1.1]) helts prematurely but then the cor-
responding condition (c}) is not satisfied.
Definition 1.5. An n-dimenstonal segment A is f-feasible if it is f-solutional or
f-indetermined.
Now obviously we have the following:

Lemma 1.5. Let A be any n-dimensional. Then:

(i) If A is an f-solutional then the function f is defined for all X € A.
(1) If A 1s not f-feasible then for all X € A the funciion f is not defined.

The prooof follows immediately from the meaning of conditions (¢;), (c}) (¢ =
1,2,3,4).

Lemma 1.6. Let A and A', with A" C A, be any n-dimensional segments. Then
if A is f-solutional A’ is f-solutional too.

Proof. Denote by o(f) the number of all functional symbols occuring in the term f.
To prove the lemma we shall prove by induction on o(f) the following implication

(*1) IfA is a f-solutional and A" C A then A' is f-solutional too, and additionally
the inequalities
m(f)(A) <m(f)(A"), M(f)(A") < M(f)(A)
are satisfied.

If o(f} = 0 then the form f is one of the terms z;, ..., z,, C, where (' is a constant
and assertion (*1) is trivially true.
If o(f) > O then the term f can have one of the following forms

Puto, 0u-v, 3 —u, 49 >*Yu, 5 expu, 6° sinu, 7° cosu

&% min(u,v), 9° max(u,v), 10° 1/u, 11° arcsinu, 12° lnw, 13° 2/u

where u, v are some terms and k£ > 0, k € N.

Let f have the form v + ». Then using the induction hypothesis and Remark 1.1
it follows that (*1) holds. Similarly one can treat cases 2°-9°. '

Let f have the form 1/u. Then by the induction hypothesis we have the following
conditions

(*2) m(u)(8) < m(u)(A"), M(u)(A) < M(u)(d)
By assumption we also have the condition

o & [m(u)(A), M(u)(A)]
Le. the following condition

(*3) m(u)(A) >0V M(u)(A) <0

11



From (*2) and (*3) it follows that
(*4) m(u)(A") >0V M(u)(A') <0

which completes proof in case 10% In a similar way the remaining cases can be
proved (see also Remark 1.2 below).
A straigtforward corrolary of Lemma 1.6 reads

(1.15)Let A be an f-solutional n-interval. Then using procedure (1.1{) ore can for

each A' C A determine the m-M pair (m(f)(A"), M(f)(A")). Moreover, this
m-M pair is monotone.

Note that this assertion is a generalization of Lemma 1.4.

Remark 1.2. Denote condition (*3) by ¢(A). Then the implication (x3) = (x4)
can be rewritten as follows

e(A) = ¢(A") (If ACA and (+2)

In other words the condition p(A) is compatible with the monotony property. The
similar fact holds for conditions (c2), (c3), (¢4)-

Let now t be a term belonging to set (1.11) and let D C R™ be a given n-dimensional
segment. We are going to solve problem (1.13) under the assumption (z4,...,2,) €
D. The set D N Dom(t) will be denoted by Domp(t).

We start by choosing some decomposition D(D). (see Definition 1.2). Accordingly
let, for fixed r, F,.(t) denote the union of all ¢-feasible products P, € D,(D). Next,
by Singp(t) denote the set of all values (z1,...,z,) € D at which, if ¢t has one of
the form

1/u(zy, ...y zn), Inu(zy,...,z,)

the condition of the form
U(T1y ey Tn) =0
is satisfied. Then we have the following basic result.

Theorem 1.1. If t is any term from set (1.11) then the following equality

(ﬂ F,(t)) \Singp(t) = Domp(t)

reR

holds.

Proof. Let first X = (x1,...,20) € Domp(t). This point does not belong to
Singp(t). Next, denote by P, the direct product Cr(z1) X ... x Cr(z,) where
(Cr(x;)) is any cell-sequence of the number z; (i = 1,2,...,n). Suppose that for
some r € N the product P, is not feasible. Then, by Lemma 1.5, (ii) the function
f, corresponding to the term t, is not defined for all elements of P,, which contra-
dicts X € Domp(t). Thus, for every r € N the products P, must be f-feasible.
Consequently: X € ((,en Fr) \Singp(t).
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Let now X € (.en Fr and X ¢ Singp(t). To prove X € Domp(t) suppose the
contrary. Then the term ¢ must have some subterm of one of the forms

arcsin u, %/u, lnu (k>0,keN)

and additionally the following condition
[w(X)| >1, u(X)<0, u(X)<O0

respectively is fulfilled. Consequently for r great enough any product P. 3 X will
satisfy the condition

m(u)(Pr) >1or M(u)(P) < -1, M(u)(P)<0, M®@u)P)<0

respectively. Thus P, is not feasible, which contradicts X € (| F,. The proof is
completed.

Remark 1.8. The set Domp(t) is the set of all solutions of the condition Cond(T)
(see 1.12). Accordingly, applying the procedure (2.6) from section 2 one can aproz-
imately determine this set as follows. Let € > 0 be a real number chosen in advance
and let Cond,(t) be the conjuction of the following conditions

lpll Z g, "'7lpa| 2 €, lqll S 17-‘-: |th S 1; ITI' 2 5,---,""5' 2 1>

81 2>0,..,8¢ >0, (.’Dl,...,.’En) €D

Cond(t) is a system of inequalities to which Theorem 2.1 can be applied. Conse-
quently the set Domp(t) can be approzimately determined in that way.

In connection with the mentioned procedure (2.6) here we add the following remark.

Remark 1.4. If in the system (2.1) any function f; is defined by some term
from the set (1.11) then, briefly said, in Definition 2.1 the feasibilty criterion
should include the following part: A is f;-solutional. Also, those A's who are
fi-indetermined should be included to Uy, but as a separate part. The reason is:
such A's have to be treated in the next step of the procedure.

4. Suppose now that f is a function defined by a term f(z1, ..., z,) belonging to set
(1.11) and in some points S the value of that term becomes indetermined (sych as
0/0, 0o/o0, etc.). Usually, f(S) is defined as the corresponding limit (if it exists).
The function f: D — R defined by

(23 .
f(z1,z0) = { 5#%5 Tf (z1,22) # (0,0)
0 if (z1,22) = (0,0)

§=(0,0, DCR? D3S§

is an example of such a function. In the case of such functions in order to determine
one m-M pair (m(f)(A), M(f)(A)), where A 3 S is a domain small enough, one
can apply Lemma 1.7 stated below.

13



Lemma 1.7. Let f: D — R be a given function and S € D. Suppose that there
erist a number €, with'') 0 < ¢ < minxesp || X =S ||, and a function A : 0,e] = R
having the following properties

(j) A is a non-negative function
(1) limysyo A(t) =0
@) 1 X=8l<e=|fX)=fS)| <A X-5)

Then for all segments A C D with the properties S € A, diamA < € one m-M pair
of the function f is determined by the equalities

(1.16)  m(f)(A) = £(S) — MdiamA), M(f)(A) = F(S) + A(diamA)

Proof is straightforward.

Notice that the condition (jjj) is weaker then the Lipschitz condition which involves
a function A of the form A(t) = Kt® where K, o > 0 are constants. The condition
(jij) is very natural since for cach continuous function f : D =+ R, § € D one can
((a_;%?;ly prove the existence of ¢ > 0 and a function A with the properties (j), (ij),
3i)-

In connection with the function f defined above we mention that according to the
inequality

2

|23 + 23] < 2r® where 7% = 22 + 13

one can define a function A by the following equality ~ A(¢) = 2|¢|.
5. Now we are going to give some formulas for m-M pairs in case of differentiable
functions (and complex regular functions).

Theorem 1.2. Let f : [a1,b1] — R be a given function belonging to the class
C*tlay,b ] where k is some natural number. Suppose also that for any segment
A= [al,ﬁu‘ (/’U)tth A g [al, bl])

(1.17) B(If*)(a)

denotes an upper bound of the modules of the (k+1)-derivative of'?) f when z € A.
Additionally suppose that the following condition is satisfied

(1.18) (Ve > 0) (3K € K) (diamA <e= B(f1)(a) < K)

that is (1.17) is bounded if diamA — 0. Then, using notations
_a+t B B~ a1
2 P73
one m-M pair of the function f is determined by the following equalities

(@)
m(/)(B) = Z o, (,f+ B N@)
(1.19)
k+1

11)9D denotes boundary of D
12)1t suffices that = belongs to the interior of A only.
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Proof. Let us start with the following well-known identity

¢ f@) )+Z(”” D' p0 / 94D () (2 — 1)k

i=1

further for the above integral we have

/I fED @)@ - t)dt) = ‘/0 FED @ + 1y - 2))(—tly — 2))*(y - z)dt
¥ 1

(*2) o pk+1B (!f(k-f—l)D (A) /1 £k dt
0
= Fre () @

Using (*1) and (*2) it is easy to prove the formulas (1.19), i.e. to complete the
proof.

Definition 1.6. The m-M pair defined by (1.19) is called the k-Taylor m-M pair
of the function f.

Remark 1.5. In formula (1.19) one may take for v any element of A, but then p
should be diamA. Similar facts hold for formulas (1,25) and (1,26) below.

It is interesting that the formulas (1.19) can be generalize to the case of real func-
tions in several variables and also to the case of complex regular functions.

For instance, if f : D — R, where D = [a,b;] x [ag, by), is a real function belonging
to the class C?(D) then similarity to (1.19) one pair of f is determined by the
following equalities

7]
m(1)®) = f) = [ 2 | o = | S | 2= 3
(1.20) M(F)(A) = f(n,v2) + afl (115 72) p1+.§f—('n,7z) p2+§

a; + i i Ty
(’Yi = wth pi = E—, B =piBii +2p1p2B12 + szzz)
where Bi1, Biz, Bas are respectively
2
5[] @ =

2’ 2
= Y@, B(|53]) @,

providing that the conditions of the type (1.18) are satisfied.
Notice that the formulas (1.20) may be easily proved by using identity® (*1) in
the case of the followmg auxiliary function g : [0,1] =+ R

gt)=Ff(m+t(E—m),re+t(re—72)) (1,7 are fixed)

o f
a 2

8 f
8::1 312

) with k = 2
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The formulas (1.20) determine one 1-Taylor pair of a given function. Of course,
generally k-Taylor pair, with k € N, can be defined in quite similar way.
Let now'*) f: D — C, D = [ay,b] x [az, bs] be a given complex regular function
and k some natural number. Further, let

) 1/2
(*3) A =[ag, ] x|z, ], v= Q%_—‘X'Z'HQ;*&,?K' = ((ﬂl —a1)? + (s - (12))

Then similarly to (1.19) one k-Taylor m-M pair of the function |f(z)| can be detr-
mined by the following equalities

k41

LNPC
m(f)(A) =11 -3 ! uh)lpi - (kp+ Yian

(1.21)
pk+1

S e

K146 ()]
M) = e+ 3o Dy
i=1 :

where By denotes the upper bound
B ( f(n+1)D (A)

supposing that the condition of the type (1.18) is satisfied.

Formulas (1.21) can be proved quite similarly as formulas (1.19). Namely, we can
again start with the identity of the form (*1) proceed as in the proof of (1.19) but
now we must use in the notion of the modulus of complex numbers. In connection
with it let us point out that in such a way we first obtain the following formula

E 146 , L EfL
N e

from which formulas (1.21) follow immediately. Let us write the inequality (1.22)
in the following form

(1.23) &I =1f (Ml =o@)  (f [z=~]—0)

emphasizing that the right-hand side of (1.22) has limit 0 when [z — | tends to 0.
It is interesting that such an inequality may be valid for certain complex functions
which are not regular. So, for function f(z) = |z| we have inequality

(4) ' llzl = Ml < 1z =1

which directly yields a fact of the form (1.23). According to this, using (1.22) and
(A) we can find an m-M pair for a complex function f which is built up a certain
composition of some regular complex functions and the function |z|. To illustrate

14) Complex numbers are treated as ordered pairs of real numbers.
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this we give an example. Let f be the complex function defined by the equality
f(2) = e*sin |z|. Then we have:'®
fz) = (" + (z=7) A) - sin|y] + B - (z — 7))
(for some A, B satisfying the inequalities'® 4] < e, |B| < 1))
=¢"sin|y| + (2 —7) [AB (2 — ) + Asin|y| + Be"]

wherefrom one can easily make an m-M formula for f.

6. Now we turn our attention to Lemma 1.1. Obviously, in practice we have the
ideal case if we may defined an m-M pair of f : D — R by equalities of this lemma,
ie. by:

(Vi1,..., Van are all vertices of A C D)
This m-M pair will be called the ideal m-M pair. Then the segment A C D

will similarly be called the f-ideal segment. For the ideal m-M pair besides the
denotations m(f) (A), M(f)(A) we may use the simbols

min(f) (A) ,max(f) (A),

respectively.

Thus far we have used formulas (1.24) several times (see Table 1.1). In general the
formulas can be used in case of monotone functions (with respect to each of its
arguments). For instance, we have such a case if:

(1.25) ) f is a linear function.
Next, suppose that the function f(z1,...,2,) has the derivatives

af af

;92;_1’ 55: (fOl‘ all (zl,...,zn) € A)

and additionally

(1.26)Each gﬁ (t = 1,2,.,n) has a fixed sign (< or >) for all (z1,...,7,) €
Interrior (A).

Then A, and also any subsegment A’ C A, are obviously f-ideal segments.

7. Now we state some general properties of m-M pairs. Let f : D — R be an m-M

function and let T'(D) be some, by Definition 1.2, chosen cell-decomposition which

is a cell-tree. Next, let (m(f) (A), M(f) (A)) with A C D be a given m-M pair of
the function f. We introduce the following denotation

(1.27)For given r € N and P, € T.(D) by P} is denoted the unique (r — 1)-product
containing Py as a subset.

15)We recall that z € D and 7 is defined by (*3)
18)For instance, (A) implies an equality of the form |z| = |y| + B - (z — h) with some B
satisfying the inequality |B| < 1.
g
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Thus, P! € Ty_1(D) and P! D Px.

Definition 1.7. For all elemmts P. € T(D) an m-M pair of the function f,
enoted by m*(f)(Pr), M*(f)(P,), is defined recursively by these equalities

m*(f)(Po) =m(f)(Fo), M*(f)(R) = M(f)(Pp) (Fo is D)

() (Prar) = max (m(£)(B2), m* (F)(P1)),
M*(F)(Pri) = min (M()(P,), M*(f)(P))

In virtue of this definition it follows immediately:
(L.28) The m*(f)(A), M*(f)(A) (with A € T(D)) are monotone (in sense (1.2)).

We emphasize that this elementary fact can be very suitable used in various appli-
cations of m-M calculus (see, for instance, Remark 3.1).

Lemma 1.8, Let f: D = R be an m-M function and let Jor each n-subsegment
A C D one point XA be choosen in advance. Then the following relations are true

(*) m(fY(A) = f(Xa) +0(1), M(f)(A)=f(Xa)+0(1), (if diamA —0)
Proof follows at once from axiom (0.2), i.e. from the fact that
(**) M(f) ~m(£)(A) = o1) (diamA — 0)
and axiom (0.1), i.e. the inequalitics
() (A) ~ £ (Xa)l, IM(£) (A) = £ (Xa)| < 1M(F)(A) - m(f) (D)
The following assertion is an immediate consequence of Lemma 1.8:

(1.29)Jf f : D = R is an m-M function then for each m-M pair of [ there exist
positive numbers €, K such that [m(f)(A)] < K, |M(f)(A)] < K whenever
A C D and diamA < e.

Deﬁni‘tion. 1.8. Let (m(f), M(f)} be an m-M pair of some m-M function { : D —
. This pair is the so-called Lipschitz’s m-M pair if there exist positive numbers &,
K, o such that the ineguality

IM(f) (A) = m(f) (A)] £ K(diamA)” (A C D)

is fulfilled whenever diamA < e. More precisely said such an m-M pair is a o-
Lipschitz’s m-M pair.

Note that in general we may impose on ¢ the restriction o < 1. Namely, in case
o > 1 the function f must be a constant function. Next, according to Definition
1.6 any Taylor’s m-M pair is 1-Lipschitz’s m-M pauir.

Remark 1.6. In case of o-Lipschitz’s m-M pairs the relations (*) from Lemma
1.8 may be replaced by these

m(f)(A) 2 f(Xa) - K (diamA)”, M(F)(A) < [(Xa) + K (diam)’
In the following theorem, supposing that a function f is defined by aterm f(z1,...,2,)
from set (1.11), one uses a notion of the strictly f-solutional segment:
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(1.30)An n-dimensional segment A is strictly f-solutional if the following condition
is fulfilled:
whenever the term f(z1,...,Zn) has some subterm one of the forms
(i) 1/t; (i) aresin t, (iii) Int; (iv) %/t (k> 0,k € N)
then the corresponding condition
(1) 0 [mt)(A),ME)}A)] (i) -1 <m(t)(8), M()(A) <1
(11’) m(t)(A) >0, (iv’) m(t)(A) >0
is satisfied respectively.

Theorem 1.3. Let f : D — R be a function defined by a term f(z1,...,2,)
belonging to set (1.11) and let D be an f-solutional segment. Then:

19 The function f is continuous for every X € D.

20 Using procedure (1.14) one can for every n-dimensional subsegment
A C D determine the numbers m(f) (A), M(f)(A). The obtained m-
M pair is monotone. It is also 1-Lipschitz’s m-M pair provided that D
is a strictly'™ fsolutional segment.

3% PFunctions (mf), (Mf) defined by equalities of the form (1.5) are con-
tinuous.

Proof is by induction on on o(f) - the number of all operation symbols
+,+,—,exp, sin, cos, min, max, 1/, arcsin, In, ¢/

occuring in the term f(zy,...,Z5).
19. In virtue of Lemma 1.5 (i) the function f is defined for all X ¢ D. By induction
on o(f) it can be easily proved that the function f is continuous. For instance,
during such a proof one case to be considered is that in which the term f(z1,...,2,)
has the form 1/t(zy,...,2,). According to condition (c;) in procedure (1.14) one
of the inequalities

(@) mt) (D) >0, (i) M(t){(D)<0
holds. If (i) or (ii) is true then for all X € D the inequality t(X) # 0 is satis-
fied, which together with the induction hypothesis yields that the function f is
continuous.
20 Bearing in mind Lemma 1.6 and (1.15) the only thing to be proved is that
the obtained m-M pair (m(f) (A), M(f) (A)) is Lipschitz’s under condition that
the segment D is strictly f-solutional. Again one can employ the induction on
o(f). Since the function |f| is continuous, it must be bounded. Using this fact and
(1.29) (applied on D) one can in a standard way complete the induction proof. For
instance, if during the proof we have the case when the term f(zy,...,z,) has the
form

*) i

1M)see (1.30)

(where k > 0,k € N)
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Then for any A C D we have

IM(£) (&) = m(7) (8)] = | /M@ (&) - %/m(e) @)|
= €T IM @) (8) — m() ()
for some ¢ € ((m(t) (A), M(t) (A))
< 5pe M) (8) - m(t) (A)

where ¢ =m(f) (D) >0
(In virtue of (1.15) we have £ > ¢)

wherefrom it is easy to complete the proof in the case when the term f(z1,..,%n)
has the form (*).

3% Let A = [a;,4] X ... X [an, Bn] C D be any subsegment of D. The (mf), (Mf)
are functions on aj, ..., ap, B1, ..., Bn with A C D. Again we use induction o(f).

If o(f) = O then f is z;, for some ¢ (i < i < n) and (mf), (Mf) are reduced to
@;, B; respectively. Obviously (mf), (Mf) are continuous functions at any point
(@1, -y tny Br, ..., Bn) where A C D. '

Let o(f) > 0. There are 13 subcases related to points (ii), (iii), ..., (xiv) of Definition
1.1 and Definition 1.3.

Case (ii), i.e. f has the form g + k. Then using (ii) in Definition 1.1 and the
induction hypothesis for g and k we conclued that (m f), (M f) are continuous
functions. As a matter of fact, we used the fact that the sum of two continuous
functions is also a continuous function. The proof is similar in cases related to parts
(iii), (iv), ..., (x) of Definition 1.1.

Case (xi) i.e. f has the form 1/g. Then (mf)(ea,...,on, b1, ..., Br) is equal to
1/M(g) (A), but under condition M(g) (A) # 0. Consequently using induction
hypothesis we conclude that (mf) is a continuous function (at any point (ay, ..., an,
B1s-yBn) with A C D). In a similar way one concludes that (Mf) is also a
continuous function.

The remaining subcases, related to (xii), (xiii), (xiv), can be treated in a similar
way, therefore the proof is omitted.
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2. SYSTEM OF EQUATIONS, SYSTEM OF INEQUALITIES

Supposing that f; : D = R (i = 1,2,...,k) are any m-M functions , where
D = [a1,81] X ... X [&n, Bn), we state a method of solving the system of
inequalities

fi(.’ltl, ...,IE") > 0, (11, ...,In) eD

which includes the case of system of equations. Several convergence questions
are studied too.

1. Let D = [a1,b1] X ... X [an,by] C R™ be a given n-dimensional segment and
let f;: D; = R (i = 1,...,k) be given m-M functions.In connection with them we
consider the following system of inequalities

(2'1) fl(xli"'l $k) 2 03"'1.fk(z1$"-rxn) 2 0) (a.ssuming (1;17'"71:1!) € D)

Denote by S the set of all its solutions. In order to determine the set S we shall
start with some cell-decomposition D(D) (see Definition 1.2).

Assume for a moment that A = [ag, 8] % ... x [an, By] is any n-dimensional sub-
segment of D. Generally such a segment can satisfy just one of the following

conditions?)
1° (Vi) M(£:)(A) >0, 2°(36) M(f:)(A) <0

Obviously a segment A satisfying condition 2° cannot contain any solution of the
system (2.1). Accordingly, we introduce the following definition.

Definition 2.1. An n-dimensional segment A C D is feasible in the sense of
system (2.1) if the following condition

(Vi) M(f:)(A) 20
is satisfied.
To this definition we add the following obvious assertion

(2.2) If an n-dimensional segment A C D contains a solution of system (2.1) than
A must be a feasible segments.

In connection with D(D) for a fixed r € N denote by F, the union of all feasible
segments belonging to D,(D). Then our first result about system (2.1) reads:

S=~&

TeN

Theorem 2.1. The equality

is true.

DiInstead of '
M(f1)(A) Z 0., M(fi)(A) > 0; M(f1)(A) < 0 or ... or M(f;)(A) < 0
we have written (Vi) M(f;)(A) >0, (3¢) M(£;)(A) < 0 respectively.
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Proof. Let first (1, ..., 7,) be a solution of system (2.1). Then according to (2.2)
for every r € N we have (z1,...,2,) € F, which implies

((L‘l,...,.’L‘n) € ﬂ B

rEN

So, we have proved the inclusion S C [,y Fr. Suppose now that (1, ...,z,) € 5.
Then at least one of the inequalities

Filzigsrmtn) €0
must be true. Since f; is a continuous function there exist a negative number p

and an n-dimensional segment A C D such that (zi,...,2,) is one of its interior
points and additionally the inequality

(*1) fi(@1,.2n) <p

is true whenever (z,...,2,) € A. Further according to axiom (0.2) there exists
6 > 0 such that for all n-dimensional segments A’ C A, with (z;,...,z,) € A/,
diamA' <'§ the following inequality

(*2) M(f;)(A") = m(£;)(A") < ~p/2
is true. Using (*1), (*2) we conclude
M(£;)(A") <m(f;)(A") - p/2
<p-p/2 (By axiom (0.1))
<0

Based on that we infer that there exists a natural number r such that for any
P, € D.(D)
containing the point (z1,...,z,) the inequality
M(f;)(Pr) <0

Lolds. Consequently for such an r the point (zi,...,z,) cannot be an element of
the set F;.. Thus we have proved the implication

(@1, s Zn) €8 = (21,,20) € [ Fr
reEN
which completes the proof.

Obviously Theorem 2.1 suggests an idea how to solve system (2.1), briefly said how
to find F; step-by-step. To improve such a procedure we can define the set Fi,
as a subset of the set Fy.. This idea is used in the following solving procedure for a
given system (2.1):

(2.3) Solving procedure depends on a cell-decomposition D(D). If we want it to be
a cell-tree then we can choose it in advance. In opposite case we determine
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D,(D) during the solving procedure. Further, step-by-step we form o sequence
(Fy) whose each member Fy is the union of some feasible products® P, € D.(D).
This sequence is defined inductively as follows

1% F} = D if D is feasible, otherwise Fy = {).
20 For any r € N

Fl,, = The union of all products Pry1 € Dyy1 (D) such that Pryy is
feasible and P, C F).

If D(D) is a cell-tree then condition Pryy C F! is satisfied, according to
the definition of a cell-tree. Otherwise, we should define Dyy1fa1,bi1], ...,
Drtilan, bn] in the (r + 1)7* step so that the condition® Phy; C F be
satisfied.

If for some r € N we have the equality F. = | then the procedure halts and S
is §. Otherwise, the sets F! when r is getting greater and greater give better
and better approzimations of the set S.

Notice that the sequences (F}.), (F,) may differ but nonetheless the equality
NeenFr = NyenF,
always holds. Besides that the sequence (F}) is monotone, for the inclusicns
F§2..DFDF. 2.
are satisfied. Generally about the nature of the procedure one may say the following:

(2.4) Using the fact that non feasible cells cannot contain ony solution we actually
reject step-by-step various solution-free “peaces” of the given domain D. Ad-
ditionally, the non-feasibility criterion is so fine that every point (21, ...,x,) €
D, which is not a solution, will be rejected in some step r. Accordingly if sys-
tem (2.1) has no solutions then in some step r all products P, C F! will be
non-feasible, which smplies the conclusion S ={).

As we shall see later for almost all aplications m-M calculus certain solving pro-
cedure like (2.3) will be used and consequently something like (2.4) will be valid.
About system (2.1) we also add the following. For some products P, it may happen
that all inequalities

m(fi)(Pr) 2 0,....m(fi)(P) >0

are satisfied. Obviously such products must be subsets of the set S. Consequently
we have the following definition.

Definition 2.2. An n-dimensional segment A C D is a solutional segment in the
sense of system (2.1) if the condition (Vi) m(f;)(A) > 0 s fulfilled.

) According to Definition 1.2, 20 elements of D, (D) are some Cartesian products.

3)For instance, n=1,a1 =1,by =1, Fp = [3,4]u[4,5]U[5,6],i.e. i = [3,6]. Then in the
7+ 1% step instead defining Drla, b1] we can define Dr[3,6] (for example dividing the segment
[3,6] into 100 equal subsegments).
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Besides this definition, the so-called indetermined segments are defined by the fol-
lowing conditions

(2.5) (Vi) M(f)(A) 20, @)m(fi)(A) <0

In other words, a segment A C D is indetermined if and only if A is a feasible
but not a solutional segment. Using the notions of solutional and indetermined
products the solving procedure (2.3) can be profoundly improved as follows®:

(2.6) Step-by-step we form sequences (S,), (U,) whose members S,, U, are unions
of some solutional, indetermined products P, respectively. Their inductive
definitions reads:

1°  Sy=D ifD is a solutional product, otherwise Sy = §§
Uo =D ifD is an indetermined product, otherwise Uy = ()

20 ForanyreN
Sr41 = 5: U The union of all solutional products P CPR
' Ur+1 = The union of all indetermined products Py1 CP,

If for some r € N we obtain the equalily S, UU, = 0 then the procedure halts
and the cquality S = 0 is true. Similarly, if for some r € N U, = () then the
procedure halts too and the equality S = S, is true.

Otherwise, i.e. if for every r € N both relations S, UU, # 0, U, # 0 are
fulfilled, the sets S, UU, when r is getting greater and greater give better and
better approzimations of the set S.

Notice that the sequences (S,), (U,) have the following properties:
S0C5C.. €S CSy1ey, Uy2U1 2...2U; DUpys...,
Fé = SoUly,..., F,f =.9; Ul,...

About the solving procedure (2.6) we add the following. Bearing in mind Remark
1.4 one can extend this procedure to the case of system (2.1) when certain of
functions f; are defined by some terms from the set (1.11).

2. Let now again D = [ay,b;] X ... X [a,, b,] be a given n-dimensional segment, and
let f1,..., fe : D = R be given m-M functions. In connection with them we consider
the following system of equations in =1, ..., z,,

(27) f] (:L‘l, ...,In) = O, ...,fk(xl, ...,In) =0

supposing that a; < z; < by,...,an < T < b,. Notice that this system can be
reduced to the following system of inequalities

fl 207—f1 201 o=y fk 207_fk >0

a S21<by, ey @n <y, < by
“)The details about D(D), stated in (2.3), are supposed.
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Accordingly we may directly apply the procedure described above. The only addi-
tional thing we want to emphasize is that using Definition 2.1 we get the following
feasibility-definition for system (2.7)

Definition 2.3. An n-dimensional segment A C D is feasible set in the sense of
system (2.7) if the condition

(2.8) (vVe) (m (fi) (A) <0< M (fi) (A))

18 satisfied.

According to this some product P, will be rejected in solving procedure if P, satisfies
the following condition

(2.9) (30) (m (£:) (Pr) >0 or M (£;) (P;) < 0)
which is the negation of (2.8).

Let now f : D — C (dim D = 2) be a given complex function and suppose
that at least one effective formula for m (|f]) is known (see (1.21)). Then solving
the equation f(z) = 0in z € D may be treated as solving the real equation
[f(2)] = 0.Now the definition of feasible segment A C D reads:

(2.10)4 segment A C D is feasible in the sense of equation |f(z)| = 0 if the
condition m (| f]) (A) < 0 holds.

An important particular case is provided when f is a polynomial function deter-
mined, say, by
f(z) = anz™ + ...+ ag (a, #0)

where a,, ...,aq are given complex numbers. Then a domain 1) = [=r, 7] x [-r, 7]
which contains all the solutions of the equation f (2) = 0 can be effectively found.
For example, by Caushy’s formula for the number r we can take

(2.11) r=1 +odmax | (lail/lan])

Notice also that previous ideas about solving complex equations f(z) = 0 can be
extended to the case of solving systems of such equations

fl (Zh "':Zﬂ) = 07 R fk(zl: ---7271) =0
Then, roughly speaking, the corresponding criterium for feasibility reads
(Vi) m (|f:]) (Pr) <0

3. Now, we give various examples. We emphasize that generally fis(r) will denote
the number of all feasible products of r-cells.

Example 2.1. Equation sinz = 1/z, z€ [1,20].

Let [, 8] C [1,20] be any segment. Then according to Definition 1.1. (ix) for the
function f(z) =sinz — 1/ one m-M pair is defined by

m(f)[a,8] = a+sina—p - 1/a, M(f)[e,fl=B+sinf-a-1/8
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By the procedure (2.3), using the feasibility definition of the type 2.2 and diadic
tree, the number fis(r) of all feasible r-cells step-by-step up to r = 25 is given in
the following list (its elements have the form (step r,fis(r)).

(1,1), (2,2), (3:4), (48), (515), (6,16), (7,16), (8,15), (9,16), (10,14),
(11,14), (12,16), (13,16), (14,15), (15,15), (16,15), (17,17), (18,16),
(19,15), (20,15), (21,15), (22,15), (23,15), (24,15), (25,15)
As we see starting with the step 5 the number of all feasible cells fis(r) is about
16. Consequently, according to (2.4), in these steps we should test about 16 -2 (i.e.
32) cells only. For instance, exactly said, in the 20°® step there are all together 220

cells,but we should test only 30 of them. In the step 25 we obtain the following
numerical result:

The given equation has 7 solutions described as follows

" 111415595 <z £ 1.11415821
2.77260345 < m9 < 2.77260572
6.4391157 < z3 < 6.4391191
9.31724286 < z4 < 9.31724399
12.6455307 < z5 < 12.6455341
15.6439972 < x5 < 15.6439983
18.9024819 18.9024853

IA A

IN A

IA
IN A

z7
Example 2.2. Complez equation in z (= +1y)

22+ (A7 +iBr) 2" + ..+ (Ao +iBy) =0
where A7, By, ..., Ag, By are given real numbers.

All solutions lie in the domain [~ ] x [—r, 7] where r is defined by (2.11). Using
the procedure (2.3), Definition of type(2.10) and diadic trees, several equations are
solved up to 25" step. In all of them the coefficienst were chosen at random. It is
interesting, the numbers fis(r), when r > 6 are pretty small. Namely, in the 25th
step this number is always less then 15. We give concrete numerical results in the
case when coefficients A;, B; are determined as follows

A7 = —0.628871968 By = —0.90620273

Ag = 0.655487601 Bg = 0.109498452
Ay = 0.794467662 Bs = 0.145832495
Ay = 0.677786328 By = 0.862459254
Az = —0.623235982 Bz = 0.945879881
Az = 0.552867495 By = —0.164039785
A; = 0.658555102 B, = 0.618662189
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Ao = 0.934256145 By = 0.147878684
The solutions z; + iy; (j = 1,...,8) are described as follows
—0.340724289 < z; < —0.34072414, —0.793053508 < y; < —0.793053359
—0.897440463 < zo < —0.897440314, —0.308772177 < yp < —0.308772027
0.385927558 < z3 < 0.385927707, —0.954408497 < y3 < —0.954408199
1.11732647 < x4 < 1.11732662, ~0.46066165 < y; < —0.460661501
—0.310650319 < x5 < —0.31065017, 0.521920323 < y5 < 0.521920621
~0.707707405 < zg < —0.707707107, 0.786857605 < ys < 0.786857754
0.643312931 < z7 < 0.64331308,
0.738826841 < z5 < 0.73882699,

0.49212873 < y; < 0.492128879
162219122 < yg < 1.62219137

Example 2.3. Complex equation in z = r + iy
g% =gz
In the domain [-20, 20] x [—20, 20] this equation has 6 solutions z;+iy; (j = 1, ...,6)

desribed as follows

2.65319109 <z; < 2.65319228 , —13.94920826 <y; < —13.94920731
2.06227660 <z, < 2.06227899, —7.58863215 <y, < —7.58863020
0.31813025 <z3 < 0.31813264, -—1.33723736 <ys < —1.33723407

Ty +iys = T3 —iy3
T5 + iYs = Tg — iy
ZTg +iy6 =Ir — iyl

The calculations were done up to the 25 step (bisection way). Starting with the
6" step the number fis(r) was about 16. For instance:

fis(24) =15, fis(25) = 16
Example 2.4. We consider the system in (x,y,2) € D C R3

e +z+siny+cosz=p
$3+esiny_z_ez=q
sin(z —z)+ (z+y)P’ —s—y—z=r

where p,q,r are some given real numbers.
Notice that in all cases stated below again diadic trees are used.

Case 1:p=2,¢=0,r=0,D=1,2] x [-2,1] x [-3,2].
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There is exactly one solution (z,y,2z) = (0,0,0). Starting with the 6*® step the
number fis(r) was between 40 and 50. In the 24* step we obtained the following

result
! —0.0000152587891 <z < 0.0000247955322

—0.0000247955322 <y < 0.0000324249268
—0.00000762939453 <z < 0.0000114440918
Case 22 p=2,g=0,r=0,D =[-5,5] x[1,5].
Step-by-step the number fis(r) is
1, 8, 21, 32, 24, 0
Accordingly, we conclude that the system has no solutions.

Remark 2.1. This czample illustrates one of the key features of the m-M calculus
generally:

(2.12) If seme problem® has no solution in a given domain D then there exists a
step k such that fis(k) = 0.

In other words, the non-ezistence of solutions can be positively established in some
step k.

Case 3: p=3,¢g=-2,r=5,D=[1,10] x [1,10] x [~10, 10].
The system has no solutions since fis(3) =0

4. Now we are going to study the feasibility problem, in other words the convergence
rate problem. First, we introduce some notions.

Let D = [ay,b1] X ... X [an,by] C R™ be a given domain and let D(D) be some cell-
decomposition (see Definition 1.2). For a fixed r € N consider any two clements
Celll, Celi2 of the set D, (D). In connection with them we introduce the following
definition

(2.13) The elements Celll, Cell2 are called neighbouring if they have at least one

joint vertez®

Next using (2.13) we have a new definition:

(2.14) A subset A, C D,.(D) is called a cell-connected set if for any two elements
Al A" € A, there exist elements Ay, ..., Ak € A, such that A' = A, A" = A
and for each i € {1,....k — 1} the elements A;, A; 1, are neighbouring.

Let now f(x) = 0 with z € D be an equation in z, where f is a given m-M function
and D = [a,b] given domain. Suppose that ¢ € [a,b] is a solution. If Dfa,?] is
any cell-decomposition then in each step r some of its r-cells must be feasible. For

5) Above we have a case of a system of equations. But as we shall see further the same fact
holds for any problem treated by m-M calculus

) For instance, in case n=1 the cells [, 8] and [y,6] are neighbouring if and only if the
condition: f = or § = a is satisffied
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instance,at least the cell”) C,(c) must be such one. Denote by Fis(c,r) the maximal
set having the following properties

(2.15)(i)  Each element of Fis(c,r) is a feasible r-cell.
(ti) Cr(c) € Fis(c,r)
(i) Fis(c,r) is cell-connected set.

Intuitively, the union of all elements of the set Fis(c,r) approximately determines
the solution ¢. Accordingly the error in the r-th step is defined as follows

(2.16) E, = diam (U Fis(e, r))

Next denote by fis(c,r) the cardinal number of the set Fis(c,r). In m-M calculus
the rate of convergence directly depends on the magnitude of these two numbers.
Of course the ideal case is when we can use ordinary min(f), max(f) for m(f),
M(f) repectively. Then, for instance, if ¢ is an isolated solution of the equation
f(z) = 0 the number fis(c,r) will be 1 or® 2. In the sequel the maximum of all
diam § with § € D, [a,b] will be denoted by d(r).

Remark 2.2. Concerning the error formula we shall often prove a certain inequal-
ity of the form

*) E, SL(r)"  (for everyr > o)

In this inequality L, o are some positive reals and o is some member of N. If
o =1 and D[a,b] is a tree such that the diameter of any element of the set T [a,b]
is (b—a)/d" where d > 1 is a fized real number, then the inequality (*) becomes

B, <L(b-a)/d"

which means that fis(c,r) is bounded by L. Such a case is close to the case when
m(f), M(f) are equal to min(f), max(f) respectively.

Theorem 2.2. Let f(z) =0, z € [a,b] C R be an eguation in x, where f : (a,b] =
R is a given m-M function for which (m(f), M(f)) is a o-Lipschitz m-M pair. Let
c € [a,b] be a solution of the equation f(z) = 0 such that the following condition is
satisfied.

(2.17) In some neighbourhood A 3 c the function f has continuous derivalive il
and f'(c) #0.

Then if we use the solving procedure (2.3) we can see that there ezist a positive
constant L and rg € N such that for every v > rq the inequality

E, < L-(d(r)”
holds.

")Recall that C,(c) contains c as an element
8)For further details see Example 2.5.
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Proof. Let |f'(¢)| = p. In virtue of (2.17) and Theorem 2.1 there exists ro € N
such that for every r > 7o the following conditions

(1) UFis(e,7) C [a,b]

(ii)  To each element A € Fis(c,r) we may apply the inequality from Defini-
tion 1.8, i.e. the inequality

IM(f)(A) =m(f) (A)] < K(diamA)® (K is some positive constant)

are fulfilled. Let d be any element of the set Fis(c,r). Then for r > ry we have the
following implicational argument:

¢ is feasible
= m(f)() <0< M(£)()

= f(s) — K(diam 6)? <0< f(s) + D(diam 8)?, where s is any element of
the 4. This follows from Remark 1.6.

= |£(s)| < K (diam )7
= |f(c) + (s — ¢) f'(§)| < K(diam §)7 (for some £ € 6)
= |s—¢| < %(diam )"
from which it is easy to prove an inequality of the type
diam ((J Fis(e,7)) < L-(d.)° (L is a constant)
i.e. the inequality (¥).

Theorem 2.3. Let f(z) =0, z € [a,b] be an equaiion in x, where f : [a,b] - R isa
given m-M function and let k be a non-negative integer. Suppose thet (m(f), M(f))
is a k-Taylor m-M pair and that for some c € (a,b) the following conditions are
satisfied

(2.18)In some neighbourhood A 3 ¢ function f has continuous derivative f*+1)(z)
and f(¢) =0, f'(¢c) =0, ..., f®(c) =0, fE+D(c) £0.

Then if we use the solving procedure (2.3) we can see that there exist a positive
constant L and ro € N such that for every r > ry the inequality

(2.19) E. < L-d(r)
holds.

Proof. In virtue of (2:18) and Theorem 2.1 there exists rj € N such that for every
r > 7'0 the condition: |J Fis(e,r) C [a,b] is fulfilled. According to (1.18) there
exist rf > rf and a positive constant K such that for all § € Fis(c,r) with r > rg
the inequality

(1) B(|s++v)) ) <k
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holds. Next, let 7 > rg and let § be any element of the set Fis(c,7). Then using
(1.19) and the inequality m(f)(6) < 0 < M(f)(6) we obtain the following inequality

E @ ()]
(s2) o< Pl 22 (50
i=1

where p = diam ¢ and ~ is any element of § (see Remark 1.5). By Taylor’s formula
we have the equalities

F=fl@)+..+ by~ ) f(k)( ) + (_@)T)'f(kﬂ)(g )
(x3) =7 +..+ i’zk—))—f(k)( )+ . ~if* FEH ()

FB(y) = B () + (v = ) fEFD (&)

where &, ..., { are some numbers between c and . Bearing in mind (*;), (*3) and
(2.18) inequality (*;) implies the following one

k
(+e) B o N 4 (BT -
4) PRy A ;e t Ak (¢>0)

=1

where the following denotations

r-¢ FEE) K
= Ai = | m~ | T e
= 7))

are employed. Obviously Ag+1 > 1. If + = oo then diam § — 0 and accord-
ing to (2.18) and (0.2) the numbers A;, ..., Ag tend to 1, while Ak+1 tends to
K/ |f**)(c)|, which is greater or equal ey Putting 41 = ... = 4, = 1,
Ay = K/ | f(’“"“l)(c)! in (*4) we obtain the following g-inequality

o K
(P.— 1+——|f(’“+1)(c)|’ P>0>

It can be easily proved that the corresponding equation has cxz;ctly one positive
solution, say A. Consequently, (*5) implies the inequality

(#5) 20" < (L+q)ft + P

O0<g<A

Let € > 0 be a positive number. Since (*5) is the limit-inequality of the inequality
(*4) when r — oo there exists some ro > r{/ such that for every r > rg the inequality
(*x4) implies the following inequality

g<A+e

Hencefrom we conclude (2.19), by which it is easy to complete the proof.
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Remark 2.3. It is not difficult to see that Theorem 2.9 can be in a clear way
transfer to the case of some complex equation

f(z) =0, where 2 € D C C
Then of course for (m(f), M(f)) we should apply the formulas (1.21).

Theorem 2.3, among others, says that if a solution ¢ € la, b] satisfies the conditions

J@©=0,..,f®() =0, f*(e) #0

ie. if c¢is a (k + 1)-fold solution, then by using k-Taylor m-M pair in solving
procedure of the type (2.3) one achieves that the sequence (fis(c,r)) becomes
bounded. Of course in order to achieve such a thing we could use any k'-Taylor
m-M pair providing that k' > %.

. Now we pass to the convergence rate problem of the system of equations (2.7).
If (¢1).rCn) is any of its solutions then the set Fis(cy, ... ¢, r) is defined by a
definition of the type (2.15). Accordingly fis(c1,...,¢n,7) is a cardinal number of
this set. The error, like (2.16) is defined by

E, = diam (U F'is(cl,...,cn,r)>

Remark 2.4 (Continuation of Remark 2.2). In this case we are also interested
in some tnequality of the form (*), where now d(r) denotes the mazimum of all
diam & with § € D,[a;,b;] X ... x Drlan,bn]. Let § = 6 x ... x 6,,. Ifo =1 and
D[D] is a cell-tree such that

- a;

dr

£

b;
(2.20) diam §; = (t=1,2,..,n)

where d; > 1 are some fized real numbers, then inequality (*) becomes

n 1/2
moxr (3 0e)

=1 &
which means that fis(cy,...,cn,7) is bounded by L.
Theorem 2.4. Let

(2.21) fi(@r, ey @n) =0, fa(@1, 00 2,) =0 (#1,.,7,) €D

be a system of equations where fi,...,fn : D = R are given m-M functions for
which (m(f;), M(f;)) are some o;-Lipschitz’s m-M pairs. Let ¢y, ...,c,) € D be a
solution and also let the following condition be filfulled

(*) In some neighbourhood A > (cy, -3 Cn) the functions fy, ..., f,, have continuous
first order partial derivatives and their Jacabian does mot vanish at the point
(Cl) sy cn)
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Then if we use the solving procedure (2.3) we can see that there exist positive con-
stants L, o and rog € N such that for every r > ry the inequaliiy

(%) B, < L(d(r)”
holds.
Proof. Let

== g-'z%(zl!"-’xn) Q&'(ﬂil,...,xn)

J=1} A
51.%(1‘1:"'73:11) E‘%(zly'")zﬂ)

be the Jacobian at any point (z1,..,z,) € A. In virtue of (*) there exists a neigh-
bourhood A’ 3 (cy, ..., ¢s), A’ C A such that the determinant®

fn
* g%(zlla---yznl) '5‘;:—1(1'117"')3"”1)
gfi—(zm, . 1 G gz-%(zln, ey i)

does not vanish whenever
’ !
(xll;---aznl) € Aly..., (xlm ---amnn) €A

and moreover |J*| > p/2 where p is the value of the Jacobian at the point
(CiyssssBn ) Hence we conclude that there exists a neighbourhood
A" 3 (e1,...,¢n), A" C A’ such that the point (c1,...,c,) is the unique solution
of system (2.21) in the domain A”. Next, Theorem 2.1 implies that there exists
a natural number 7 such that Fis(cy,...,cn,7) is a subset of the set A" whenev-
er r > ro. Additionally suppose that ro has been chosen so that for r > ry the
inequality diam 6 < 1 holds for any § € D,(D).

Let now § be any element of the set Fis(ey, ..., cn,7). Then for r > ry we have the
following implication argument

0 is a feasible product
= (Vi) (m(£:)(d) < 0 < M(£;)(4))

= (Vi) (fi(s1, .., 8n) — K (diam )7 <0 < fi(s1, ..., sn)i + K (diam 6)7°)
where K is some positive constant and (si,...,s,) is any point of 4.
That follows from Remark 1.6.

= (V) |fi(51, oy 5n)| < K (diam 6)%

= (Vi)|fi(s1,--,8n)| < K (diam 8)” where ¢ =min(oy,...,0,),providing
that diam § < 1.

= ()| fiers e n) + T (55— ) B @rir o mi)| < K (diam )°
by Lagrange’s theorem; for some z1;, ..., Zy; € §, where i = 1, ..., n.

91t follows from the fact that J is a polynomial in 8f;/8z;.
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= (Vi)Y (s — c,)%(a:h, ,Zni) = 0;K (diam 8)7, where 8; € [-1,1]
are some real numbers.

= (Vi) (sj—¢;)-T* = P;-(diam §)° by Cramer’s theorem, where P, ..., Py
are the corresponding determinants.

= (V4 ls; — ¢l < 2p7 Y| Byl (déam )7, for: |T| > p/2

= (Y4)|sj — ¢;| £ L' (diam 6)°, where L' is some constant.
= Fo-gl L & (diam 8

= diam (|J Fis(ci, - Cn,7)) < L (diam 8)°, where L = 2L'
=  diam (| Fis(e1, cn,r)) < L(dr)°

= ™

Now we will consider system (2.7) which is more general than system (2.21). Con-
cerning that system we assume:

(2.22) 1% fi, ..., fr : D — R are given m-M functions and (m(f;), M{fi))
are some 1-Lipschitz’s m-M pairs of them.

20 In D the functions fi,..., fr have all the first order partial deriva-
tives, and these derivatives are m-M functions.

3% The use of solving procedure (2.3).
4% ¢ =(cy,-..,cn) € D is an isclated solution of the system.

Notice that the condition: {m(f;), M{fi)) are 1-Lipschitz’s m-M pairs, is not a
strong restriction (see!®) Theorem 1.3). The main practical problem which can
appear is

() The sequence fis(cy, ..., cn) is not bounded

Denote by J1, ..., J, ) all minors of order n of the Jacobi matrix
Ifi
9z

Bearing in mind Definition 2.3 and the given proof of Theorem 2.4 one nécessary
and sufficient condition for (d) is

(Cl 5% cﬂ)

All minors J1, ..., j(h) vanish at the point ¢
Accordingly:
(2.23) If we have case (o) we may replace system (2.7) by this one
(2.7), plus equations: J; =0, ..., j(k) =0

10) Any Taylor’s m-M pair is also 1-Lipshitz’s m-M pair.
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We emphasize that (2.23) is the main idea used to diminish the number of feasible
cells. Of course this idea can be used several times'). As an illustration we give
two small examples.

Example 2.5 Consider the system
f(z,y) =0,9(z,y) =0 (where f(z,y) =y —2°,9(x,y) =y)

in (z,y) € D =[0,1] x [0,1].
A = [a, ] % [v,0] is any subsegment of D then applying Definition 1.1 we have
the following formulas

m(f)(8) =7~ B, M(H)(A)=8-a* m(g)(d) =v,M(g)(d) =

These formulas are of the type (1.1). However, despite of that fact, the members
of the sequence'®? fis(0,0,r) are in turn

1, 2, 3,3,5,6,9, 12, 17, 23, 33
46, 65, 91, 129, 182, 257, 363, ...
It is not difficult to prove that fis(0,0,r) is the number of all i-solutions of the

inequality
i? <27 (assuming i=0,1,2,...)

Consequently fis(0,0,7) is not bound. Can it be compatible with the fact that
m(f), M(f), m(g), M(g) are min(f), max(f), min(g), max(g) respectively? The
main point is the following:

Generally, in the equivalence

For some x,y € A, & min(f)(A) <0 < max(f)(A)
f(z,y) =0,9(z,y) =0 min(g)(A) < 0 < max(g)(A)

only =>-part is valid.

Since fis(0,0,r) is not bound we can apply (2.23). So, from the given system
f=0,9 =0 we pass to the new one:

f=0,9=0, fig,— fra:

i.e. to
y—22=0, y=0,z=0

Now the members of the new fis(0,0,r) are in turn
1, 1,..
i.e. generally fis(0,0,7) = 1.

) Each time a cooresponding condition of the type (2.22) 2° should be fulfiled.
l2)The_a pair (0,0) is the unique solution in D. Also the bisection way is used
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Example 2.6 Let f(z) = 0 be the equation
22 —3224+3zx-1=0
and D = [1,2].
Obviously, 1 is a triple solution of this equation. Using diadic tree denote by

A= [a,a+2—£], with @ = 1 + %,i:ﬂ,'l,...,f—l

any cell in the r-th step. Then for m(f), M(f) we have the following formulas

2
m(f)(A) =a® -3 (cx+ 2—1r) +3a -1,

= LI 302 +3(at 1) -1
M())(A)=|a+ 5 ) ~3e + \a =
The condition M (f)(A) > 0 is always fulfilled for
M()(A)>a® -3 +3a~-1>(a-1)" >0

The condition m(f)(A) < 0 can be rewritten in this way
3 1

(*1) CES U+ (Zcr + 2—)

This inequality holds provided that

1
(@=1°<6-

Putting a =1 + 21; we get the inequality
(*2) $<6.27 (i=0,1,..2"-1)

Denote by Fi(r) the number of all i-solution of that inequality. This Fy(r) is not
bounded, the same is true for fis(1,7) since fis(c,r) > Fi(r). So, by (2.23) from
the equation f(z) = 0 we pass to the system

fl@)=0,f'(z) =0
i.e. to the system
23 -322+3z-1=0,22-2z+1=0
Now we have a new m-M pair

m(f)(A) = o — 2 (a-l- 51—) +1, M(F)(A) = <a+ Qi)z —2a+1
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Since M(f')(A) > e®—2a+1 > 0 the condition M (f')(A) > 0 holds. Consequently,
a cell A is feasible iff

(*3) m(f)(A) <,m(f)(A) <0
The condition m(f'")(A) < 0 can be rewriten in this way
1
2
- =l
(-1 <2 5
ie.
(*4) i?<ot (i=0,1,..,2"-1)

Notice that (*4) implies (*2), and since (*2) implies (*1) we conclude that (*4)
implies (*1). In other words feasibility condition (*3) can be reduced to (*4).
Denote by'3) Fy(r) the number of all i-solution of (*4). First we point out that
Fy(r) < Fi(r), which means that the transition from f(z) = 0 to the system
f(z) =0, f'(z) = 0 profoundly'#) diminished fis(1,r). However, since F, (r) is not
bounded we again use (2.23). So, from the system f(z) = 0, f'(z) = 0 we pass to
the system f(z) =0, f'(z) =0, f"(z) =0, i.e. to the system

2°-322+3x-1=0,2°-22+1=0,z-1=0

1
But now fis(1,r) will be 1, since only the cell |1 + e is feasible.

About the Example 2.6 we also notice the following. For the given equation f (z) =
0 an m-M pair m(f), M(f) can be defined by these equalities

m(f)(A) = min(f)(A) = a® — 302 + 30 -1
M(f)(A) = max(f)(A) = ° - 36% +38 -1
(where A = [a, A])
Then in each step r the number fis(1,7) will be 1.
In the following example we consider a system (2.7) with k < n.

Example 2.7 Equation in (z,y) € [—4,4] x [-3,3]

»
»

2 y
A
ot

This equation has infinity number of solutions. Using diadic tree the numbers of
feasible cells are in turn
4, 12, 28, 56, 112, 224, 448, ...

and corresponding drawings are

13)Thus Fy(r) is the new fis(1,r).
4 Namely, Fi(r)/F2(r) = 0 when r — oco.
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Step 3:

Step 4:
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Step 5:
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Step 6:
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At the end we give an example in which also solutional cells appear.
Example 2.8 Inequality
24e-(z4+y+2)—et—evtl >
in (z,y) € [0,2.4] x [0,1.4].
Using diadic tree the numbers of indetermined and solutional cells are in turn

indetermined: 4, 15, 31, 67, 139, 275, ...
solutional: 0, 0, 13, 38, 102, 239, ...

Here is the corresponding drawing in the step 6

"

)

Hih

1
1
1

23
[INIRIN]

LTI
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3. n-DIMENSIONAL INTEGRALS, INFINITE SUMS; THEIR m-M PAIRS

For functions in whose definitions the notions of n-dimensional integrals or
infinite sums are involved the following questions are studied: how to calculate
their values and how to determine m-M pairs.

L. Let D = [a;,b1] x ... X [a,,b,] C R™ be a given n-dimensional segment and let
S5 be the set of all solutions in z;, -y Zp, Of the following system of inequalities

(31) fl(zla"-:zn) 2 01---;fk(zla-~-7zn) 2 0 ((‘L‘l;---vzn) € D)

where fi,..., f : D — R are given m-M functions. Denote by Si(S) the subset of
the set .S determined by the following additional condition

(3.2) i1,y Tn) =0V fo(z1, ey 2p) =0V ...V Ji(z,eyzy) =0

Assuming that the Jordan measure of the set S (S) is zero we look for the value of
the Riemann integral

(3.3) I=/---/Sg(zl,...,:rn)dxl...dz,,

where g : D — R is a given function having some Lipschitz’s m-M pair. The
procedure we are going to state is a continuation of the procedure (2.6) concerning
system (3.1). In connection with the sets S, U, (see (2.6)) denote by S!,U! the
sets of all r-products P, whose unions are the sets Sy, U, respectively. We shall
also use the following well-known functions!)

(3.4) mi(z) = min{0,z}, ma(z) = max{0,z}

Theorem 3.1. Let S # @ and let (L. (I)), (Ry(I)) be two r-sequences defined by
the following equalities

LD =3 m@)(P)-V(P)+ Y mi(m(g)(P)) V(P)

PeS] PeU.
(3.5) Be(I)= 3" M(9)(P)-V(P)+ 3" ma(M(g)(P)) - V(P)
PegS!, Pes!,

(r € N,V(P) is the volume of P)

where (m(g), M(g)) is some Lipschitz’s m-M pair. Then for every r € N the fol-
lowing double inequality

(3.6) L) < T < Ro(T)
is true. Moreover, the equality
3.7 ' Jim (R(I) — Ly (1)) = 0
UIn mathematical literature usually the denotations z~, 2t are used respectively
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holds

Proof. Based on the solving procedure (2.6) the following double inclusion
S.C8CS Ul, (r=01;.)
holds. Consider the sums

=3 gla, &) V(P), I'= 3 gl&1,ba) V(P)

Pes,, Pes LU,

where (£1, ..., {n) may be any element of the product P. First we prove the following
inequalities
' Lr(I) £ Ivl* < RT(I)1 Lr([) < Irl-l < Rr(I)
Indeed, one proof of the inequality L,(I) < I. reads:

L= 3 6, n) - V(P)

Pes:,

> 3" m(g)(P)- V(P) (for g(&1, ..., &) > m(g)(P))

Pes:

> m@)(P)-V(P) + 3 mi(m(e)(P)-V(P) (for mi(z) < 0)
Pcst, PeU!,
=L, (I)

v

In a similar way one can prove the remaining inequalities. To'complete the proof
we shall prove (3.7). Consider the equality

R.(I) - L.(I) = Y (M(g)(P) -~ m(g)(P)) - V(P)

Pes,

+ Y (ma(M(g)(P)) - mi (m(g)(P))) - V(P)

PeU!

Using Definition 1.8 it is easy to prove that

lim > (M(g)(P) —m(g)(P))-V(P) =0

TP 00
Pes!,

Next bearing in mind (1.29) to complete the proof it suffices to prove the following
equality

*) lim 3 V(P)=0
PeU.

The set Sx(S) is defined by conditions (3.1), (3.2) which can bricfly rewritten as
follows

(3.8) (Vi) fi(@1, o Bn) 2 0, (3) fil@1, 1 Zn) =0, (21,.,2n) € D
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The set Sy(S) can be determined by a procedre similar to (2.6), more precisely
said, by the procedure (5.1) (see also Theorem 4.4, part (ii))- Then according to
Definition 4.2 a product P, € D,(D) is feasible in the sense of (3.8) if and only if
the following conditions are satisfied

(Vi) M(f)(Pr) 20, (J) (m(f:)(Pr) <0< M(f)(P))
which is logically equivalent to the conditions
(Va) M(fi)(Pr) 0, (F)m(fi)(Pr) <0
Using Theorem 4.4, part (jj), i.e. the equality
5u(8) = (] F+((38)
. TEK
and the assumption that the Jordan measure of Si(8S) is zero we conclude that
A 2 VB)=0
P.CF.((3.8))

Finally since U, C Fy ((3.8)) this equality implies equality (*). The proof is com-
pleted.

Notice that one disadvantage of the approximative formula (3.5) is that its two sides
should eventually be calculated for all values of 7, and each of these calculations is
independent. However, this difficulty can be mitigated in the case when the function
g is suitable for effective integration respective to n-dimensional intervales. N amely,
in that case in formula (3.5) the parts

Y. m@P)-V(P), 3 Mg)P)-V(P)

Pesl Pes,

> /.../g(zl,...,zn)dzl...d:vn
Pes., z

In accordance with this in the eventual further calculation, having in mind proce-
dure (2.6), we retain the members P € S and gradualy diminish only members of
the set U} in order to separate new solutional cells; then on them we again calculate
the integrals of the function g, etc.

can be replaced by

Remark 3.1. i is supposed that D[D] is a call-tree. Concerning the sequences
(Lr(D)), (R,(I)) we mention the following. In general, they are mot monotone
sequences. However, using the idea of Definition 1.7 and supposing that D(D) is a
tree we can make two new (L, (1)), (R.(I)), as follows

Lo(I) = Lo(I),  Ly1(I) = max (L,(I), L.(I)) ’
Bo(I) = Ro(I), Rryi(I) =min (R(I),R,(I)) (reN)
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These sequences are monotone and also satisfy conditions of the type (3.6) and
(3.7). Additionally, notice that the sequences (L.(I)), (R-(I)) are monotone under
the following condition

(**) The m-M pair (m(g), M(g)) is monotone.

The proof is more or less straightforward.

Example 3.1. For the integral I:

/ / Tydzdy
Cond(z,y)
where Cond(z,y) reads

0<r<20<y<?, 24e-(z4+y+2) > evtl 4 vl

by using 4-tree?) we have the following results

Step 1:. 0.0000000000000000 < I < 0.5625000000000000

Step 2: 0.0278320312500000 < I < 0.2424316406250000

Step 3: 0.0950307846069336 < I < 0.1581497192382812

Step 4: 0.1179245151579380 < I < 0.1341890022158623

Step 5: 0.1239582093403442 < T < 0.1281216432544170

Step 6: 0.1255188694198068 < I < 0.1265613023800256

Step 7: 0.1259090350460332 < I < 0.1261702301487544

Step 8: 0.1259090350460332 < J < 0.1259090350460332

Step 9: 0.1259090350460332 < I < 0.1259090350460332
2. Now we are going to extend the notion of m-M pairs to the case of the functions
in whose definitions some Riemann integrals or infinite sums are involved.
One such example is the function fi[a,b] = R defined by the equality

(39) f@) = [ gyt
where g : [a,b] =R is a function having a Lipschitz’s m-M pair.
Let A = [a, ] be any subsegment of the segment [a,b]. Then an m-M pair
{m(f)(A), M(f)(A)) can be defined as follows
1a) \

m(f) (A) = | 3" m(g) (Ar) diam Ak) = (M (lg]) (A))diam A

=1
(3.10) )

M(f)(A) = (Z M(g) (Ax) diam Ak) + (M (|g)) (A))dz'am A

k=1

2n every step one dimensional cells are divided in 4 equal subcells
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providing that the segments A, -y Ay(a) satisfy the following conditions:
19 AyU.LLU Aya) = [a, 8],
2°  The interiors of any two segments A;, Aj, with 1 # j are mutually
disjoint.
3% limgigm A, maxdiam Ay =0

Proof. Let z be any element of A. Then we have

f@= [ " ()i + / " gltyt

1(Aa) ‘ 3
<Y Ma)Awdiam A+ [ lo(tl
k=1 &
1(a)
< Z M(g)(Ar)diam Ay + M (|g]) (A)diam A
k=1
So, M(f)(A) defined by (3.10) really is an upper bound of f when z € A. Similarly
one can prove that m(f)(A) is a lower bound of f when © € A.

In virtue of (1.29) there exist € > 0, K > 0 such that M (|g|) (A) < K whenever
diam A < e. Accordingly in view of the equality

1(A)
M(£)(8)=m(f)(A) = D (M(g)(Ax) — m(9)(Ar)) diamAg +2M (|g]) (A)diamA

k=1
to complete the proof it suffices to prove that
1(A)

liMmaiam a-s0 Y, (M(9)(A) — m(g)(Ax)) diam A = 0
k=1

This follows directly from the assumption that {m(g), M(g)) is a Lipshitz’s m-M
pair. The proof is complete.

Now consider the function f : [a,b] =+ R defined by the following equality

(3.11) f@ =Y gl
=1

where g;(z) : [a,b] = R are given m-M functions. Then it can be easily proved that
one m-M pair of f can be determined by the following formulas

(1) mAA) =Y me)@), MG =3 M@, (A< )

i=1 i=1
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providing that both infinite sums are A-uniformly convergent. In connection with
this let us additionally suppose that for all T € [a, ] an inequality of the form

> gi(@)

i=n
is satisfied where (h,) is some sequence with the property hn, —+ 0 if n — co. Then
one m-M pair for the function f can be defined as follows

< ha

I(diam A)
m(B) = Y m@:)(A) = hagdiom a)
(3.13) t(di:: A)
M()A) = Y M(g)(A) + hngaiam a)

i=1
where [(diam A) € N is a function of diam A with the property

limgiam a—o l(diam A) = oo.
1
For instance, a function ! can be determined by: [(t) = [E] , where ¢ > 0.

Example 3.2. Let f be a function defined by the equality

2 1
f@)=) —
;x+2

Concerning the equation f(z) =c¢, witha <z <b where a,b,c are constants we
have the following results (diadic tree is used)

Case ¢c=15,a=0,b=1

In the step 20 we obtain the following double inequality
0.54416 < z < 0.54417

The numbers fis(r) (r = 1,2,..., 20) are in turn

1,23,3,23,2,2,3,2,3,3,2223,2 3,2 3

Case ¢=15a=06,b=1
Step 1 fis(1) =1; Step 2 fis(2) =1; Step 3 fis(3) =0
Conclusion: f(z) = c has no solutions

Similarly, concerning the equation f(z) = z, with a < z < b we have the following
results :

Case a=0,b=1. In the third step fis(r) = 0, so the given equation has no
solutions.
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Case a=0,b=2. The fis(r) (r=1,2,...,20) is 1 or 2. In the step 20 we obtain
the following double inequality

1.19055 < = < 1.19056

Exarple 3.3. Let f be a function defined by f(z) = f; f_%dt

Concerning the equation f(z) = C, with A < z < B where A, B,C are constants
we have the following results (diadic tree is used)

Case : C=1, [A,B]=[0,1]

Case : C=1, [A,B]=[1,20]

Step 1, fis=1 Step 1, fis=2
0<z<1 1<2<20
Step 2, fis=1 Step 2, fis=2
06<z<1 1<z<10.5
Step 3, fis=2 Step 3, fis=2
05<z<1 1<z <575
Step 4, fis=2 Step 4, fis=2
0625 <z<1 1<2<3.375
Step 5, fis=4 Step 5, fis=2
0.75<z<1 1<2<2.1875
Step 6, fis=3 Step 6, fis=1
0.8435 < < 0.9375 1 <z <1.296875
Step 7, fis=3 Step 7, fis=1
0.875 < x < 0.921875 1 < z<1.1484375
Step &, fis=3 Step 8, fis=0
0.89065 < x < 0.9140625 no solution
Step 9, fis=1
0.8984375 < z < 0.91015625 Case: (' =1,[4,B] = 3, 100}
Step 10, fis=3 Step 1, fis=1
- 0.90234375 < z < 0.908203125 3<z<30
Step 11, fis=3 Step 2, fis=2
0.903320313 < = < 0.90625 3<z<16.5
Step 12, fis=4 Step 3, fis=2
0.904296875 < = < 0.90625 3<z<9.75
Step 13, fis=4 Step 4, fis=1
0.905029297 < z < 0.905761719 3 <2 <4.6875
Step 5, fis=0

no solution

47



Similarly, concerning the equation f(z) = 1/z with A<z < B (A, B are constants)

we have the following results
Case : C=1, [A,B]=[0.2,1]
Step 1, fis=1
02<z<1
Step 2, fis=1
06<z<1
Step 3, fis=1
06<z<1
Step 4, fis=2
08<z<1
Step 5, fis=2
09<z<1
Step 6, fis=2
0925 <z <0975

Step 7, fis=2
0.937 < z <£0.9625

Step 8, fis=1
0.94375 <z < 0.95

Step 9, fis=2
0.94375 < z < 0.95

Step 10, fis=2
0.946875 < z < 0.95

Step 11, fis=2
0.946875 < z < 0.9484375

Step 12, fis=2

0.947265625 < = < 0.948046875

Case : C=1, [A,B]=[1,20]
Step 1, fis=1
1<z2<20
Step 2, fis=1
1<z<105
Step 3, fis=1
1<z <5.75
Step 4, fis=1
1 L€ 3375
Step 5, fis=1
1<z<2.1877
Step 6, fis=1
1<2<1.59375
Step 7, fis=1
1<z < 1.206875

Step 8, fis=1
1<z < 1.484375

Step 9, fis=0
no solution
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4. m-M PAIRS OF THE FIRST ORDER FORMULAS;
SET-THEORETICAL INTERPRETATION

In this section we study a way in which various informations on real num-
bers, expressed by the first order-logic formulas, can be translated into the
corresponding information involving the notion of m-M pair. More precisely
formulas (4.9), (4.10) are proved.

1. First let a class of certain m-M functions of the type
Ff:DSR (D =[a1,b1] X ... X [an, b,] C R™)

be given, where number n (>0) and the domain D for each function may be arbitrar-
ily chosen. In connection with such functions we consider a class of the first order
<, L-formulas. The definition given bellow slightly differs from usual definitions of
the first order formulas (see for instance [6]).

First, an atomic <, <-formula is any formula of the form

(4-1) f(ylv ey yp) p 9(z1, ...,Zq)

where

(p may be < or <)

filan,by] x ... X [ap, by] = R, g:ler,di] X .. X [cq,dy] = R

are some m-M functions!) and elements of the given class, while y1, ..., yp, 21, ..., 24
are variables which do not need to be mutually different?). - Further, generally a
<, <-formula is any formula built up from some atomic <, <-formula using in 2
finite number of steps the logical connectives A, V, - and the quantifiers of the form
(Vv € I(v)), (v € I(v)), where v is a variable and I (v) is the set called segment of
v, the notion to be explained bellow. In order to avoid some technical difficulties
about the way of building the <, <-formulas we generally assume the following3)

(4.2) In any <,<-formula all bounded variables are mutually different and addi-
tionally none variable can be both free and bounded. Further in the case of
formulas of the form

(qvelIw)¥® (gisY or3; v may be any variable)
the variable v must be a free variable of the subformula V.

Now we shall explain the notion of ’segment of v’.

~ DMore precisely said, (4.1) is a string which f, g are functional symbols, p is a relational
symbol and yi, ..., yp, 21, ..., 2q are some variables.
2 Examples of such formulas are:
f(,2,9) <9(y,2,2),  h(z,2) < g(z,2,y)
3)As a matter of fact <, <-formula built up in a standard way is logically equivalent to
some <, <-formula with property (4.2).
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In the case of atomic formulas of the type (4.1) if all variables y;, z; are mutually
different we take these definitions

I(yi) = [aiybi],  1(z5) = [ej,44]
However, if for example the variables
C Yirs ey Yinr Zgra oo 24,

are mutually equal but different from all other variables then their segment is
defined as the following intersection

[@i,, b, ) NN as,, bi ] N [cj,dip ] N o0 ey, dy, ]

Let further ¢ be any <, <-formula and let v be its free variable. Denote by ¥y, ..., ¥y
all atomic subformulas of ¢ containing the variable v. Then I(v) is the intersection
of all segments of v which are already related to the subformulas ¥, ..., ¥;. Finally,
if v is a bounded variable of ¢ then according to (4.2) there is exactly one subformula
of ¢ which has the form

(qv e I(v))¥(v) (¢gisVor3)

and v is a free variable of ¥(v). Then, by definition, for I(v) we take the segment
of v with respect to the formula ¥(v).

Example 4.1. Let
filor,b1] x [az,bo] = R, g:ler,di] x [e2,d] + R, h:les, fi] X [e2, fo] 2 R
be some given m-M functions. Then
(4.3) (Vz € I(z)) (3y € I(y)) (f(z,2) < g(z,9) A h(z,y) < f(2,2))
is an example of <, <-formula for which we have the equalities

I(z) = [a1,b1]Ner, fil, I(y) = [ea,da]N]ez, fo], I(2) = [@1,51]ﬂ[az,b2]ﬂ[01,d1]

2. Let now ¢ be a given <, <-formula whose all variables are among the variables
T1, ..., Tm. Suppose that to each segment I(z;) (i = 1,...,m) one cell-decomposition
D (I(z;)) is assigned (see Definition 1.2). We are going to define the notion of m-M
pair of the formula ¢ with respect to the cell-decompositions D (I(z;)), (i = 1, ...,n).
The m-M pair will be defined as a particular sequence of ordered pairs

(mO ((10)’ MO(‘/)))) saay <m1‘(<p))MT(LP))1 oer

Their definition, i.e. Definition 4.1 bellow, has sintactical nature. Starting with a
given ¢ we apply this definition recursively. We point out that during this process
each bounded variable say z; will be replaced by a new variable X;.
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Definition 4.1.

() e (F (Y1, Up)P9(21, - 24)) = ()Y X oo X Y,)PM(g)(2} X .. X )
My (f(y1,s - Yp)pg(21, oy 24)) = M ! ' 7 7
Y153 Yp)PG\21, -5 Zg (f)(y]_ K wwa X yp)pm(g)(zl X ... X Zq)
(p may be < or <).
Variables yi, ..., yp, 21, ..., 24 are some of 1,y Ty X1, o0y Xm. Denotation '
means the following

z; denotes C,(z;), while X! denotes X;

(") me(a A B) =mr(a) Am.(8); Me(aA B) = M, (a) A M,(B)

(ii) m.(aV B) =m(a) Vm.(B), Mr(aV f) = M(a)V M,(B)

(iv) m(-a) =-M,(a), M(-~e) = ~m,(a)

(v)  Let afz;) be a formula having z; as @ free variable and q be a quantifier Y or
3. Then we have the following equalities®)

my (g zi € I(z:)) a(=:)) = (¢ Xi € Dy (1)) myr (X))
M; (g =i € I(2:)) a(z:)) = (¢ X € D, (1(z:))) M, (a(X3))

For instance, if  is the formula (Vz,) f(z1,%2) < g(z2, x3) then m.(p) (r = 0,1, a)
by Definition 4.1 can be constructed as follows

my ((v:l'-z) f(xlsz) < g($27 1‘3))
= (VX3 € D, (I(z2)) mr (f(21, X2) < 9(X2,23))
Part (v) of the definition i
= (VX3 € D, (I(z2)) m(£) (Cr(21) x X2) < M(g) (X2 x Cr(23))
Part (i) of the definition

In a similar way one can obtain the following formula for M, (¢):

M, ((Vz2) f(z1,72) < g(2,73)) .
= (VX2 € D, (I(z2))) M(f) (Cr(z1) X X2) < m(g) (X2 X Cp(3))

Notice that in an obvious way these m,(p), M, (p) can also be treated as some
first-order formulas. Then X, is a bounded variable for both of them and the
symbols Cr(z),Cr(z3) should be taken as their free variables. Accordingly, if we
denote the formula ¢ by ¢(z1,z3), emphasizing that z; and z3 are free variable of
ip, then it is natural that m,(y), M, () are denoted by

me(¢) (Cr(21), Cr (1)) , Mr () (Cr(z1), Cr(3))
respectively. Generally we are going to apply similar denotations.

Theorem 4.1. Let (21, ., ;) (withm > 0) be a <, <-formula whose all free vari-

qbles are among i, ...,Tm. Then for every r € N the following double implication
18 true

(44) M. (p)(Cr(z1),....,Cr(zm)) = (15 ey Trm) = My () (Cr(21), ooy Cr(Zm))

DNotice that in this step the variable z; is replaced by X;.

51



provided that the variabled zy, ..., z,, have any values from their segments I(z;), ...,
I(zm) respectively.

Proof. Denote by I(¢) the number of all logical symbols A,V,-,V,3 occuring in
the formula!) ¢(z1,...,Zn). The proof is by induction on ().

If I(p) = O then the formula ¢ has the form

j(y11""1y}7) P g(z11"'7211) (p is < or S)

with {y1,...,¥p, 21, ., 2} = {Z1, .., Zm} and (4.4) reduces to the following double
implication

M(£) (Cr(y1) X ... x Cr(yp)) p m(g) (Cr(21) X ... x Cr(2,))
= (Y15, 9p) P 9(215 . 29) =
m(f) (Cr(y1) X ... x Cr(yp)) p M(g) (Cr(21) X ... x Cr(2,))

which follows directly from axiom (0.1).
Let I(¢) > 0. The formula ¢(z1, ..., m) can have one of the forms

1% A8, 2°avpB, 3%-a
4 (3z € I(z)) a(z, 21,y Tm),  5° (V2 € I(2)) a(Z,T1, ooo; Tpn)

In the case 1° we have

M, (aA B) (Cr(xl)s ey Cr(2m))
= Mo(@) (Crl@1)s s Cr(@m)) A My(B) (Cr(@1)s s Cr(m))
(By Definition 4.1)
= T, ) N BB, o Bin)
(By induction hypothesis)

So in the case 1° the implication M, (p) = ¢ is proved. Similarly the implication

¢ => m,(p) can be proved.
Proof in the case 2° is similar. In the case 3° for the implication M, (p) = ¢ we

have

M;(-a) (Cr(z1), .., Cr(z1m)) B
=  -my(a)(Cr(z1), ..., Cr(Tm)) (By Definition 4.1)
=  -a(,..,Zm) (By induction hypothesis, i.e. by the implication
(T1, ey Tr) => m(@) (Cr(21), -0y Cr(Tm)))

Similarly the implication ¢ = m,(p) can be proved. In the case 4° for the impli-
cation M, (p) = ¢ we have
(X € D, (I(2))) Mr(a) (X, Cr(z1), ... Cr(zm))
= Mr(a) (Xo,C,.(:L‘l),...,C,-(Zm))
(X is some fixed element of D, (I(z))).

DIt is supposed that during the proof formula ¢ none of the brackets is omitted. So, for
instance, instead of A A B A C we have ((AA B) A C).
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M, (a) (Cr(z0), Cr(z1), ..., Cr(Tm))

(zo is any chosen element of X, and the set X is treated as C, (z0))

a(.’to, Tiyeeny Zm)

(Induction hypothesis)

= (3zel(z))afz,z1,..., Trm)

Similarly, the induction ¢ = m,(p) can be proved. Finally, the proof in the case
59 is similar too.
Consider now again the <, <-formula ¢(z;, ..., T.,) assuming that z, ..., z,, are all
free variables of this formula. Denote by .S () the set of all values of (z;, woy@m) €
I(zy) X ... X I(zs) for which the formula @(Z1, -, Trm) is true. Generalizing Defi-
nitions 2.1 and 2.2 we now introduce the following double definition.

Definition 4.2. Let r € N be a given element and let P, = X; x ... x Xy, be a
Cartesian product of some r-cells X; (with X; € D, (I(z:))). Then:

(i)  The product P, is feasible in the sense of the formula ¢ if and only if
the condition m,(p) (X1, ..., Xm) is satisfied. :

(i) The product P, is a solutional product in the sense of the formula  if
and only if the condition M,(p) (X1, ..., X,) is satisfied.

Suppose that all bounded variables of the formula P(T1y ey Tim) BTC Y1, evy Yy (M >
0). Let r € N be any fixed number. Each of the sets D.(I(y:)) (i =1,...,m) is a
finite set. Consequently the quanitifiers of the forms

(VY: €D, (I(yi)))1 (BY, €D, (I(yi)))

can be in a standard way reduced to the corresponding conjunction, disjunction
respectively. Then having in mind the way how the formulas m,. (@) (X1, .. Xon),
M:(p)(X1,..., Xmm) are constructed one may for them say

(4.5) mr(0) (X150 Xm) , My (0) (X, ...y Xm) are equivalent to some A —V expres-
sions whose basic parts are some inequalities of the form

m(f)(Pr) < M(g)(@r), m(f)(P:) < M(g)(Q,)
M(f)(Fr) <m(9)(@r), M(f)(P:) < m(9)(Q,)

where P, Q, are Cartesian products of some r-cells.
Example 4.2. Let ¢ be the formula

(Vz € [a, b)) (3y € [es d)) f(z) < 9(¥)

and let
DZ[aa b] = {AIsA2’ AB} 1D2[C’d] = {017 C2}

Then my(yp) reads
(VX € Dafa,b]) (Y € Dyle,d)) m(£)(X) < M(g)(Y)
which is logically equivalent to
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(*)  (m()(A) <M(9)(Cy) vV m(f)(A1) < M(g)(C2))
A (m(f)(Az) < M(9)(C1) Vv m(f)(42) < M(g)(C2))
A (m(f)(4s) < M(g)(Ch) vV m(f)(4s) < M(g)(Ca))

According to fact (4.5) for eny fized r € N and any product P, one can in finite
number of steps ezamine whether P, is feasible or solutional product.

There is one very interesting connection between the notions being feasible, and
being solutional product P,.. These notions are ¢-dual to each other which
means that generally the following equivalence is true

(4.6) P.is -vg:-feasiblel) & P, is not ¢ — solutional
The proof is simple:
P, is — -feasible
< me(-p) (X1,..., Xm) (where P = X3 X ... x X,5)
By Definition 4.2
& M (p) (X1, Xin)
Since generally m,(—p) = ~M,(¢)
& P, is not g-solutional
Denote, like we did in section 2, by S,(y), F(¢) the unions of all solutional, feasible

products P, with fixed € N, respectively. Notice further that double implication
(4.4) can be rewriten as follows

(vr € N) (M (0)(Cr(z1), o0y Cr (@)
= (21,00 Trn) =
mr(‘P) (C,-(Z'l), veey Cr(zm)))

and also in this way?

(47) @r € N) My(0) (Cola1)s s Cr(zm)
= @(T1y 00y Tr) =
(Vr € Ny m () (Cr(21), e Cr(2m))

Combining this double implication and Definiton 4.2 one immediately obtains the
following natural assertion.

Theorem 4.2. In general, the double inclusion

(4.8) U Sk(e) € S(p) € [ Fr()

reN reN

1)—~(p-feasible means feasible in the sense of the formula —”. A similar shorter way of
writing is used on the right-hand side of (4.6) too.
2)Using the standard properties of quantifiers as:

(vreN)(Wr =9) & (BreN)y¢r =)
(providing that r is not a free variable of ¢)
where v, is M; (Cr(z1), ..., Cr(zm)).
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is true.
About the sets |J,cn Sr(¢), Nren Fr(w) now we point out that according to the
well-known facts they are an open, a closed set respectively.

3. Considering double implication (4.7) one can put a natural question when one

of the symbols = may be replaced by the symbol «. The answer will be given by
Theorem 4.3.

A formula ¢ is the so-called <-positive formula if it is built up using the relational
symbol < and the logical symbols A, V, V, 3 (i.e. without the negation symbel).
In a quite similar way the notion of <-positive formula is introduced.

In order to prove Theorem 4.3 we shall use Lemma 4.1 below. In this lemma we
use the following denotation: '

If A is any one-dimensional segment then D' (A) is the set of all one-dimensional
r-cells X having at least one common point with A

Lemma 4.1. Let ¢ be a positive <-formula whose all free variables are among
T1y ey Tin- Suppose that these variables have some initial values (from their inter-
vals) and that there erists k € N such that

(*1)  Me(¢)(Cr(21), ..., Ch(mm)) s true.
Then there exists ro € N such that for every r > rq
(VX1 € D,(Ci(x1)))-..(VXmM € DL(Cr(zm))) M, ($)(X1,...,Xm)

is also true.

Proof. Denote by I(¢) the number of all logical symbols A, V,V, 3 occuring in the
formula ¢. The proof is by induction on the I(4). '

Case I(¢) = 0. Then ¢ has a form S, -9p) < g(z1,..,2,) where
{¥15-,Ypy 2150, 2¢} = {21, ..., Z;m }. By hypothesis (*1) we have the following in-
equality

M(F)(Cr(ya) x .. X Ci(yp)) < m(g)(Cr(21) X ... x Ci(zy))
where k € N is a constant. According to the fact that generally
M()(Y1 x . x Yp) =m(f)(Y1 X ... X YV,) =+ 0
M(g)(Z1 % ... x Z;) =m(g)(Z1 X ... x Z;) = 0
(Y € Dr(I(ys)), Z; € D-(I(z;)) are any one-dimensional r-cells)

when 7 tends to oo, there exists a ro € N such that for every r > ro (with 7 € N)
we have the inequalities

(*2) M. (f)(Y1 % .. x Yp) =mo(f)(Y1 X.... X 1)

< 3(m(9)(Cr(z1) X .. x Ci(z)) = M(£)(Cr(y1) X .. X Cr(wp)))
(*3) Mo(9)(Z1 X ... X Zg) = my(g)(Z1 X ... X Z)

< 5(m(9)(Cr(21) X ... X Ci(2q)) = M(£)(Cr(y1) X ... X Cr(y,)))

(where Y; € Dr(I(y:)), Z; € Dy (I(z4)))
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Let Y; € D, (I(:)), Z; € D,(I(z;)) be any r-cells with the property:
There exist points y;, 2; such that
v; € YinCr(yi), 2; € Zj N Cr(2;) (i=1,..,p7=1,..,9)
For any such Y3, ..., Yy, Z1, ..., Z, we have the following argument:
m(g)(Z1 X ... X Zg) — M(f)(Y1 % ... x Yp)

M(g)(Z1 X .. X Zg) —m(f)(Z1 X ... X Z,)
] (g)(—I%X(m(;)(Ck(h) X Xle(zq)) = M(£)(Cr(y1) x ... x Ci(vp)))
(by (*2), (*3))

> 9(21, 7)) = f1r-ap) '
w - (m(g)(C;(zl) X .. X Ci(2)) = M(£)(Cr(y1) X ... X Ci(yp)))

Ci(21) X .. X Cr(2q)) — M(£)(Ci(y1) X ... x Ci(y))
ety s Cuond) M el e Gy

>0
which completes the proof in Case l(¢) = 0.

Case l(p) > 0. The formula ¢ can have one of the forms
1% A8, 2%aV g, 3° (3v e I(v)) a(v, T1, ..., Tm) 4° (Vo € I()) (v, Ty, ey Trn)
Case 1°. By hypothesis (*1) we have the following assumption
Mi(a A B)(Cr(z1), ...y Ce(zm)) is true.
Further we have the following argument:
Mi (o A B)(Ci(21), -+, Ch(zm))
— Mi(a)(Ck(21), -, Ck(zm)) and Mi(B)(Ci(z1), ..., C(zm))

— There exists r; € N such that for every r > r; and
(VX1 € D,(Ck(z1))).--(VXm € DL(Ck(zm)))
Mi(a)(X1,..., Xm) holds

and there exists o € N such that for every r > r; and

(VX1 € D (Ck(21)))---(VXm € D(Cr(zm))) _
M(B)(X1,..., Xm) holds.  (Using induction hypothesis)

— for every r > maz(ry,r2)
and (VX1 € DL(Ck(z1)))...(VX™ € DL(Cr(zm)))

Mi(aAB)(X1,..., Xm) holds.
which completes the proof in case 1°.
Case 2°. By hypothesis (*1) we have the following assumption

Mi(aV B)(Ck(z1), ..., Cr(zm)) is true, where k € N is a constant.
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Hence we conclude that

Mi(a@)(Cr(21), .., Ck(xm)) is true or Mi(B)(Ck(z1), ..., Ci(z,n)) is true.
Let My (a)(Ck(z1), ..., Ck(zm)) be true.
Further we have the following argument:

Mi(a)(Ck(21), -+, Ck(2m))

— There exists r; € N such that for every r > ry
and (VX1 € DL(Ci(z1)))...(VXm € D (Ci(zm)))

Mi(a)(X1, ..., Xm) holds. (Using induction hypothesis)

— for every r >y and (VX1 € D}(Ci(1)))...(¥vXm € DL(Cy (zm)))
Mi(aV B)(X1,..., X;m) holds (Using part (iii) of Definition 4.1)

which completes the proof in case 29, since the case when
My (B)(Cr(21), ..., Ck(zm)) is true
can be treated in a quite similar way.
Case 3°. By hypothesis (*1) we have the following assumption

(3V € D (I(v))) Mi(a)(V, Ci(z1), -y Ci(Tm)) is true, where k € N is a con-
stant. :

Hence we conclude that for some W € Dy (I(v))
(*4) My (@)(W, Ci(21), ..., Ci(zm)) is true.

This W can be treated as Cy(v), where for the variable v one can take any initial
value from the set W. Of course, we do not need to replace W by Cj(v).

In connection with (*4) consider the formula a(v,z1,...,2m) whose free variables
are among v, I1, ..., Tm. For this formula we have i(a) < I(¢), consequently we may
use induction hypothesis. Bearing in mind (*4) we obtain the following conclusion:

(*5) There exists r; € N such that for every r >
and (VV € Di(W))(VX1 € D.(Ci(z1)))...(VXm € D, (Ci(zm)))

My (e)(V,X1,..,Xm) holds.
To complete the proof in case 3° we shall prove:
For every r > r; and (VX1 € DL(Ck(x1)))...(¥Xm € D;(Ci(zm))) -
(*6) (3V € D (I(v))) M (a)(V, X1,..., Xm) holds.

Indeed, let r > r; be any fixed natural number and let X1,...,.Xm be any elements
of the sets Dy (Ci(z1)), ..., DL(Ck(2m)) respectively. To prove (*6) it suffices to find
’a witness’ for V. According to (*5) as a witness one may take any element of the
set D7 (W). So,the proof in case 3° is complete.

Case 4°. By hypothesis (*1) we have the following assumption
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(*7) (YV € Dr(I(v))) Mi(a)(V, Cr(21), ..., Cik{Tm)) is true, where K € N is a
constant.

The set Di ([ {(v)) is a finite set. Let
81,52, Skk
be all of its elements. We point out that kk is a fixed element of the set N. According

to (*7) we have the following consequences

(*8) Mi(a)(S1,Cr(21), .., Cr(zm))

Mi(a)(Skk, Ch (I1.), ey Ci(@m))
are true.

In connection with it consider the formula a(v, z,...,z,,) whose free variables are
among v, Ty, ..., Tm,. For this formula we have i(a) < l(¢), consequexl'tly we may
use induction hypothesis. Exactly said we shall use .inductxon llxypothesxs kk times.
Namely, in connection with (*8) we have the following conclusions

*9) There exists r; € N such that for every r > r;
4 and (YV € DL(51))(VX1 € DL(Cr(x1)))...(VXm € D, (Cr(zm)))
Mp(2)(V,X1,...,Xm) holds.

There exists rir € N such that for every r > 7y ’
and (VV € DL(Sk))(VX1 € DL (Ci(1)))...(VXm € DL(Cr(zm)))
Mi(a)(V,X1,...,Xm) holds.

Let rg = max(ry,...,Tkx ). Then according to (*9)

For every r > ry we have:

(*10) (VV € DL(51))(VX1 € DL(Ck(z1)))...(YXm € DLCk(zm)))
Mi(a)(V,X1,..,Xm) holds.

(VV € DL(Skk))(¥X1 € DL(Ck(21)))--(YXm € DL(Celzm))
Mi(a)(V,X1,...,Xm) holds.

To finish the proof in case 4° we shall prove:
For every r > rp and (VX1 € D.(Ck(z1)))...(VXm € DL(Ci(zm)))
(VV € D, (I(v))) My (a)(V, X1, ..., Xm) holds.
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Indeed, let 7 > rg be any fixed natural number, further let X1,...,.Xm be any
elements of the sets D,.(Cx(z1)), ..., DL(Ck (zm)) respectively, and finally let V be
any element of the set D,.(I(v)). So, we should prove that

(*11) M.(a)(V,X1,...,Xm) holds.
First, since:
S1ULUSK = I(v)

the V must have a common element with some Si, where 1 <4 < kk. Then using
the i-th formula in (*10) we conclude that (*11) is true. Thus the proof in case 4°
is complete, which means that Lemma 4.1 is also proved.

Now we go to prove Theorem 4.3.

Theorem 4.3. Let all free variables of the formula ¢ be among the variables
Z1y-yTm (withn > 0). Then:

(1) If ¢ is a <-positive formula then the equivalence

(4.9) (21, -, Tm) & (3r € N) M (0) (Cr(21)y ey Cr(zm))
holds.
(#) If ¢ is a <-positive formula then the equivalence
(4.10) (T s i) @ (Vr € N) my () (Cr(z1), .., Cr(zm))
holds.

In both cases it is supposed that the varigbles Ty, ..., T have any vaiues from their
segments I(z1), ..., I(zm) respectively.

Proof. (j) Since the <=-part of equivalence (4.9) is already proved (see (4.4)) we
have prove the =-part, i.e. the implication

(411) ‘P(‘T“l’ | xm) = (37‘ & N) MT(W) (Cf(z1)7 "‘JCT(ITB))
As a matter of fact we are going to prove the following implication
(4.12) @(T1; s Zm) = (3ro € N) (Vr > 70) M () (Cr(z1), ..., Cr(zm))

which is a little more general ‘than (4.11). Namely, if we take r = ro then from
(4.12) it follows (4.11). ‘

Denote by I(p) the number of all logical symbols A, V,V,3 occuring in the formula
». The proof is by induction on the ().
Casel(p) =0. Implication (4.12) reduces to some implication of the form

(*1) f(yl7 veey yp) < g(Z1, ...,Zq)
= (3ro € N) (Vr > 1)

M(f) (Cr(y1) x ... x Cr(yp)) < m(g) (Cr(z1) x ... x Cr(2q))
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where y;, z; are some of €1, ..., m. Let) {y1, ..., ¥p, 21, .., 2} = {21, ..., T }, Where
m < n. Let Xo = (z1,...,%m) € D, where D = I(z;) X ... X I(z,,) , be any point
and let inequality

f(yh '-'7yp) < g(zl?""zq)

hold at this point. Denote (y1, ..., ¥), (21, ..., 24) by Yo, Zo respectively. Let a,b be
two real numbers which at the point Xj satisfy the inequality?)

(*2) C f(Y0)) <a<b<g(Z)

In virtue of axiom (0.2) it follows that there exists a positive number d such that
the following inequalities

(3 M) - m(B) <25 Mle)ag) - mia)(Ae) < L2

are satisfied whenever

(*4) A1,4; are any p—,g—dimensional subsegment of I(y;) X ... X I(yp), I(z1) x
... X I(zg) respectively, Yp € A, Zg € A, and

diam Ay < d,diam A, < d
From (*3) one can easily prove the following inequality
(*3) M(f)(A1) <m(g)(A2)

under the condition (*4). Next, in virtue of Definition 1.2 and condition (1.9)(v)
it follows that there exists ry € N such that for any r > ry the inequalities

diam (Cr(y1) X ... X Cp(yp)) < d, diam (Cr(21) X ... x Cr(z,)) < d
hold. Applying (*5) we get the inequality
M(f) (Cr(y1) % ... X Cr(yp)) < m(g) (Cr(21) X ... X Cr(z,))

which completes the proof in case () = 0.
Case l(p) >0. The formula ¢ can have one of the forms

1% A B, 2°a Vv B, 3° (Fv € I(v)) a(v, 21, vy Tm) 4° (Vo € I(v)) a(v, 71, sss5 Tm)
Case 1°. By the induction hypothesis we have

a(T1, .0y Zm) = Mp(a) (Cr(z1), ..., Cr(zrm)) forr>r'
B(@1,.ey Zm) = Mr(a) (Cr(21), ..., Cr(zr)) forr > 7"

where r', 7" are some elements of N. Taking ro = max(r',r"), then for every r > ro
we have the following implication argument

D Of course this is only a technical assumption.
Dinstead of f(y1, .-y ¥p)s (21, --.» 2g) We wrote f(Y0), 9(Zo) respectively.
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TR iy N
= M (&) (Cr(z1), ., Cr(Tm)) A M(B) (Cr(21); 0oy Cr(Tm))
= M (aAB)(Cr(z1), oy Cr(zm))
By Definition 4.1, part (ii)

which completes the proof in case 19.
Proofin case 2 is similar. In case 3° we have the following implication argument
(Fv € I(v)) a(v, 21, ..., z,m)

= a0, %1, Zm) (vo € I(wg) is some fixed element,)

= (3ro € N) (Vr > ro) My (@) (Cr(va), Cr(21),...,Cr(zm)) (Induction
hypothesis) .

= (o €N)(Yr > 1) AV € D, ((v))) M (a) (V,Cr(z1), ..., Cr(zm))
which completes the proof in case 3°.
In case 49 we have to prove the following implication

(Vv € I(v)) a(v, 71, ..., Trm)
= (3ro € N) (Vr 2 70) (VV € D, (I(v))) My (a) (V, Cy(z1), ... Cr(Xm))

Suppose the contrary. So we have the following assumptions?)

&) (Vv € I(v)) a(v, 71, ..., z,,)

(™) = (Fro € N) (vr 2 10) (YV € D, (I(v))) My () (V, Cy (1), ..., Cr(zm))
From (**) it follows
(¥r0 € N) @r > 10) BV € D, (1(0))) =My (@) (V, Cp (1), Co ()

hence we conclude that there exist!) a sequence r; < 7z < r3 < ... and a number
vo € I(v) such that Cp, (vo), Cr, (vp), ... satisfy the conditions

(A) =M, (Cr.' (UO)’ C'f‘.' (Z‘]), -"7C7‘.' (Im)) (Z =12 )

Now from (*) it follows a(vo, T1, ..., Tp,). Hence by induction hypothesis we con-
clude

(AA) (3ro) (Vr > ro) M, (Cr (1), C- (i Yyonss Cr(xr@))

Bearing in mind Lemma 4.1 we see that (A) and (AA) contradict each other. So,
the proof of (j) is complete.

(i) For the moment denote equivalence (4.9) by P(p) & Q(p). Replacing ¢ by
—p, where this new ¢ is any <-positive formula, we obtain the equivalence

P(=p) & Q(-p)

l)During the proof we suppose that z, --;Tm have any fixed values.

DFor instance, applying Axiom of Choice and Cantor’s theorem on sequences of nested
segments.
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Further, by negating both sides in this equivalence we obtain the equivalence
=P(-p) & ~Q(-v)
After a short logical calculation this equivalence reduces to (4.10). In other words

equivalences (4.9) and (4.10) are ¢-dual to each other.
The proof of Theorem 4.3 is complete.

Now we give some examples of equivalences of the types (4.9) and (4.10)
f(@) > g(y) & (3r € N) m(£)(Cr(z)) > M(9)(C:r(v))
f(=@,y) > 9(y) & (3r € N) m(£)(Cr(z) x Cr(y)) > M(9)(Cr(y))
(Vz € I(z)) (3y € I(y)) f(z) > g(y)
& (3r eN) (VX € D, (I(z))) BY € D, (I(y))) m(f)(X) > M(g)(Y)
f(z) =0& (Vr e Nym(f) (Cr(2)) < 0 < M(f) (Cr(2))
(For: f(z) =0 f(z) <OA f(z) 2 0)
Double inclusion (4.8) may be treated as a set-theoretical interpretation of dou-

ble implication (4.4), Similarly to this there is the corresponding set-theoretical
interpretation of Theorem 4.3. Namely we have the following assertion

Theorem 4.4.

Let z,...,xm be all the free variables of the formula ¢. Then:
(7) If ¢ is @ <-positive formula then the equality

(4.13) S(e) = | Sr(w)
reN
holds.
(77) If ¢ is a <-positive formula then the equality
(414) S() = () (o)
reN
holds.

Proof. (jj) The C-part is covered by Theorem 4.2. To prove D-part suppose that
(T1,..., ) is any element of the (F,.. According to Definition 4.2, part (i) we
conclude the following
* me(p) (Cr(z1), .., Cr(Tm)), foreveryreN
To prove @(z1, ..., Tm) we suppose the contrary
=@(Z1yeeey Tim)

Since - is a <-positive formula then applying (4.9) we conclude

My, (=) (Cro (1), -y Cro(Zm)), for some rq € N
Using Definition 4.1, part (iv) we conclude

Mo () (Cro (21)y ey Cro (Zm)), for some rg € N

The proof is completed since this contradicts to (¥).
(j) Equality (4.13) can be easily proved using equality (4.14) and general equivalence
(4.6).
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5. SOLVING A FIRST ORDER <,<-FORMULA

In this section we state various applications of the results established in section
4, such as:

Problem of constrained optimization (Problem ©.2, Problem 5.3)

Problem of unconstrained optimization (Problem 5.1)

min-max problems (Problem 5.4)

Problems from Interval Mathematics {Problem 5.5)

1. Let ¢ be a given positive <, <-formula whose all variables, free or bounded, are
v1,...,v. Concerning their segments I(v;) (i = 1,...,) we suppose that for each of
them one cell-decomposition D (I(v;)) is chosen (see Definition 1.2). We consider
the following classs of problems.

Class 5.1

(i)  If z1,..,zn are all the free variables of the formula v, findV) all values of
z; € I(zi) (i = 1,...,n) for which the formula ¢ is satisfied.
() If the formula ¢ has no free variables establish whether @ is true or false.

Notice that the problems treated in section 2 belong to this class. Namely, it suffices
to see that any inequality system (see 2.1)

f1 20,0, /20
may be treated as the conjunction:
H20A.LAf>0

which is a positive <-formula.
Consider first the problem of type Class 5.1, case (i). If ¢ is a positive <-formula
then due to Theorem 4.4 for the set S(y) of all its solutions we have the equality

S() = Nien Fr(v)
where Definition 4.2 also understood. Consequently:

(5.1) To find the set S(p) one can employ a procedure almost identical to that
described by text? (2.3). More precisely, like in (2.3), instead of the sequence
(Fr()) one can use the sequence (F.(g)) for which we also have the equality

S() =) Fiw)
€N

and edditionally (F](yp)) is a monotone sequence.

DIn other words, solve ¢ in 1, ..., zn.
2)The following conventions

lai, b)) = I(z;), i=1,..,n; D= [a1,61] X ... X [an, bn]
are adopted.
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The solving procedure, as we saw in section 2, can be profoundly improved by
using the notions of solutional (see Definition 4.2) and indetermined products
(a product P, is indetermined if and only if P, is a feasible but not a solutional
product). In more detail the improvement is described by text (2.6). However,
unlike the problem treated in section 2 now some additional difficulties can arise in
connection with the fact that ¢ can have some quantifiers. Such questions will be
discussed in Problems 5.1, 5.2, 5.3 and particulary in part 2 of this section.

If v is a positive <-formula tvhen the set S(p) can be determined using the equality
(see Theorem 4.4)
S(e) = |J 5-(»)
reEN
Notice also that S(p) can be determined by means of the equality

S(p) = A\ S(-e)
provided that S(~¢) is determined by the procedure (5.1) described above®

Finally, let ¢ be a positive <, <-formula containing both of the symbols <, <.
Denote ¢ by ¢(<,<) also. Replacing the symbol < by the symbol < from the
formula (<, <) one obtains the formula ¢ (<, <). Similarly, (<, <) is the formula
obtained from (<, <) by replacing the symbol < by the symbol <. Now we
emphasize the following double implication

(*1) p(< <) = (<, 2) = ¢(%, 3)
which can be easily proved. From (*1) it follows the following double inclusion
(*2) S (p(<, <)) € S(p(<, <)) € S(p(s, )

The sets S (p(<, <)), S(p(<,<)) can be determined by the procedures stated
above. Accordingly, the set S (¢(<, <)) can be by (*2) approximatively determined.

Next we consider the problem of type Class 5.1, case (ii). Now the main role has
the double implication of the form (4.4) and the fact that, in principle, for any
fixed 7 € N one can in a finite number of steps examine whether m,(¢), M, () are
satisfied (see (4.5)). Accordingly in order to solve a problem of type Class 5.1, case
(ii) we employ the following procedure

(5.2) (i) We start withr =0.

(i) We calculate m,(p). Then:
If my(p) is false the procedure halts and the answer is: ¢ is false.
Otherwise, we go to (iii).

(i) We calculate M (p). Then
If M. () s true the procedure halts and the answer is: ¢ is true. Oth-
erwise, we go to (iv).

(iv) We replace r by r + 1 and go to (ii).

3)For —y is equivalent to some positive <-formula.
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Concerning this procedure generally there are two possibilities

(56.3) (j) It stops at some step rq.
(7)) 1t never stops.

In case (j) we are able to establish effectively whether the formula @ is true or
false. In case (jj) according to equivalences (4.9), (4.10) (with n = 0) we have the
following conclusions:

19 o is false if ¢ is a positive <-formula.

20 s trueif ¢ is a positive <-formula.

An example in which case (j) appears is when ¢ is the formula
Frel,2)z*xz >2,

but if ¢ is the formula
Fre(l,2)zxz=2

we have case (jj).

2. Now we are going to state some problems belonging to Class 5.1.

Problem 5.1. Let f : D = R (D = [a1,b1] X ... X [ap,b,]) be a given m-M
function. We seck all points (z1,...,2,) € D at which this function attains the
minimum velue, i.e. we solve in (z1,...,2,) € D the formula

(54) (Vyl € [a’li bl]) o (Yyn € [ambn]) FABiysss zn) < f(yl; w3 Yn)

This is obviously a problem of Class 5.1 (i). The corresponding definition of feasible
products (of r-cells) reads

(5.5) A product Xy X ... X Xy, of r-cells X; is feasible (in the sense of (5.4)) if it
satisfies the condition

(*) (VYI € Dr[alabl]) (VYn € Dr[ana bn])
m(f) (X1 X .. x Xp) K M(f) (Y1 X ... x Yp)

Denote by Min the set of all solutions of (5.4). This set is not empty. Next, it has
the following property

(5.6)  If P,Q € Min then f(P) = f(Q) (Uniqueness of the minimum bal‘ue)

Further, suppose that D' C D is any non-empty set. Then obviously the following

implication is valid

(5'7) (v(ylv'"vyn) € D)Vf(xlv"-vzn) S f(ylv-"7yn) s
= (V(yl’ ey yn) € Dl) Flars Tn) < f(yla --'7yn)

.Combining (5.6) and (5.7) the following fact follows immediately

(5.8) Let D', with Min C D' C D be any set. Then the set of all solutions
(z1,...,%s) € D' of the formula

(v(yla oeey yﬂ) € DI) f(zl, "-azn) S f(yl: sy yn)
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15 just egual to Min.
This fact can be used in the following manner

(5.9) In the solving procedure we step-by-step replace the initial domain D by the
sets Fy, ..., F}, ... respectively.

Practically that means that part (*) of Definition (5.5) is replaced by the following
one ‘
() V(Yi,e ¥a) € (Drfos, 1] X . X Drlan, ba]) () Fiy)

m(f) (X1 X ... x Xp) S M(f) (Vi X ... X Yy)
In such a way the for-loops of the variables Y3, ..., Y;, are profoundly diminished.

The next question is about the number of the feasible cells in the r-th step, denoted
say by fis(r). At first, it is not difficult to see that this number depends on the
equality of m-M pairs used in the solving procedure. For instance, consider the

case in whieh:
D=[0,2], f(z)=2*-2z+1

Applying the ordinary binary tree, when in the r-th step any cell is of the form
A=[l,d, withl =i/2""  d=1+1/2""1 (;=0,..,2" 1)
it can be easily seen that
19 If we use the formulas
m(f){A) =12 ~2d+ 1, M(f)(A) =d? — 20 +1

then fis(r) ~ 2"=1/2 when r — +00.
2°  But, by using the idea of ideal m-M pairs (see Lemma 1.1) it is not
difficult to conclude that fis(r) =4 (r > 2).

Return now to Problem 5.1 in the general case assuming:

(5.10) The function f has the first order partial derivatives af /o, ..., Of Oz, for
all (z1,...,zn) € Dand these derivatives are m-M Sfunctions.

Suppose also that
(A) The function f attains its minimum at some point (c1,..-ycn) € Interior(D)

According to the well known fact at the point (ci,...,c,) all equations

. of of _
(0-11) ) 55; =07...£1‘1‘ --O

must be satisfied. In conection with it to the feasibility criterium (5.7) (*’) we may
impose the following additional requirements

6.12)  m(fz,) (X1 % .. xXp) SO<SM(fL) (X1 X .. x Xp) (i = 1,..,n)
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Of course, in such a way the initial feasibility criterium ig refined profoundly.

Now we consider Problem 5.1 under the condition (5.10) only (i.e. without (A)).
In that case, as it is well known, roughly speaking we first correspond to the given
function f several ”subfunctions” f1, ., fr and after that we seek their minimums
separately. Each of problems: find min(f;) is either of type (A) or is trivial. Then
for min(f) we use the following equality

min(f) = min(min(f,), <o min(fy)).
To be more clear we illustrate this idea in casesn =1, n = 2.
Case n=1 Then D = la1,b1), f : D = R. The subfunctions are fi, f2, fa:
f1(@) = f(z) for 7 € (a1,b1);  fu(z) = f(ay); fs(z) = f(b)

First we seek min(f;), when we also add the condition f'(z) = 0. It may happen
that min(f;) does not exist. For min(f) we have the equality

min(f) = min (min(f), f(a;), f(b1))

if min(f;) exists, otherwise
min(f) = min (f(a1), f(b1))

Case n=2 Then D = [a1,01] x [a2,b5]. f =D — R. The subfunctions are
f1, fay .., fo determined as follows:

Hzy) = flz,y), ai<z< b1, as <y <by. The equalities f, =0, fy=0
may be added.

The equality 50; fla1,y) = 0 may be added.
The equality 7% S(az,y) = 0 may be added.
fu(®) = f(z,00), ay<z<by. The cquality £ f(z,a3) = 0 may be added.
fs(@) = f(z,03), ay<az<by. The equality & f(z,b2) = 0 may be added.
fo=flar,a2), fr=f(a1,5), fs= flbr,a2),  fo = f(by,by)
For min(f) we have the equality

min(f) = min (min(fl),min(fg),...,min(f5),f6,f-,,fg, fo)

If some min(f;), where s < 1 < 5 does not exist then the previous equality does not
contain the term min(f;).

fz(y):f(ahy), ag <?/<b2
f3(y) = f(blyy)y a2 <y< b2'

Remark 5.1. In m-M Calculus we usually use ’the cell-decompostion strategy’.
But, we can use another strategy as well. Here we shall state a skech® of a procedure
LS by which under some conditions one can find a local minimum or a saddle point
of the function f from Problem 5.1.

Let § belsome positive real number, choosen arbitrarily. If (z,, «yZn) € D then by
A(z1, ..., Zn, 8) we denote the Cartesian product [z -6, z; +0] X .. X [2n — 8, zp +4].
We suppose that f: D — R satisfies the condition

DA complete version will be published separately
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Function f has the second order partial derivatives Fanzys fz. . and these
derivatives are m-M functions in each A(zy, ..., 2y, 0) where (z1,...,2,) € D.

In the procedure LS we shall use the following general fact:

Let g : [a~h,a+h] = R be a function having the first order derivative g'(z)
for every z € (a — h,a + h), whose modulus |¢'(z)| is bounded by some positive
constant K. If g(a) > O then g(z) > O for every € [a — h',a + h'] where
W =min(h, ¢'(a)/K)

In procedure LS we use the following constants, chosen arbitrarily :

Smaz - the maximum number of steps in the procedure
Mem € {0,1,...,n} - an auxiliary number.

Procedure LS (partly described in "Pascal style’) reads:
We start with an initial point (p1, ..., pa) from D.

k=1 Fbri:::ltondoz,— = pi;
100: Mem:= 0;

Fori:=1ton do

Begin
If f;.(z1,...;Tn) > 0 then
Begin if z; = a; then Mem:=Mem +1 else

x; := zr;-min(4, fa. (z1, -y In)/M(If;l:l;,z.-’)(A))
End

else if f, (z1,...,2,) < 0 then

Begin if z; = b; then Mem:=Mem +1 else
i = zi+min(d, f7,(T1,...,2a)/M(|f7, 2.1)(A))
End

else Mem:=Mem+1
End

If Mem= n then write(’ Result is "z, ..., z,)
else if k < Spaz then Begin k:=k+1; goto 100 End
else write(’ Approximative result is’,z1; ..., z,)

It is supposed that we use the following general equality:
M(|gl)(A) = maz(Im(g)(A)], |M(9)(A)]), where gis f;

Ti,Ti®
Problem 5.2. Let g, fi,..,fr : D = R, where D = [a1,b1] X ... X [an, b,] be
given m-M functions. Let A be the set of all points (z1,...,z,) € D satisfying the

inequalities
(5.13) F1(®1, s 0) 2 0y fi (@1, ey Ta) 2 0
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Restricting the function g to the set A we seck the set S of all points (z1, ..., T,)
€ A at which g attains the minimum value (the problem of constrained opti-
mization® under the condition (z1,...,z,) € D).

In other words we seek all points (z, ..., Z,) € D satisfying the following conditions
(5.14) 1°f1 (21, ey Tr) > 0, eeey fr(T1y ooy Tn) >0
2° (Y(y1,-,Yn) € D) [fr(y1, s ¥n) 2 0, fi(yn, sy > 0
= 9(@1, . 7n) < (Y1, -, Yn)]
Obviously the sets 4,.S are connected by the equivalence
S#£DeA#0

However, (5.14) treated as a conjunction of its parts 1° and 2° is not a <-positive
formula, therefore we cannot apply a procedure like (5.1). In connection with this
trouble we put the following assumption

(5.15)If at some point (z1,...,z,) € D the inequalities
fl (xly "'1$n) 2 05 "‘fk(xIQ ---’zn) 2 0

are satisfied then in each neighbourhood N(zy,...,z,) of this point there
is @ point (T1o, ..., Tno) € D satisfying the inequalities

fl(xlos "'azno) > Ov '--fk(mloa "-7zno) >0

Using this assumption we first prove the following equivalence®

(5.16) (Yy1) ... (Vyn) [(V) fi(y1, - ¥n) 2 0= g(z1,...,Zn) < (Y1, - Un)]

is equivalent to

(Vyl) oma (Vyﬂ) [(VZ) fi(ylv weey yn) >0= g(zla ---7:1:11) S g(y17 eeey yn)]

Indeed, =>-part is trivial. To prove <=-part suppose that (zi,...,,) has any fixed
value (€10, ...,Tno) € D and that the condition (Vi) fi(y1, ..., yn) > 0 is fulfilled at
some point (¥1,...,¥n) '€ D. If (105 .-:sZno) < g(¥1, ..., ¥n) the proof is completed.
Suppose now that the oposite inequality g(Z10,...,Zno) > g(¥1, ..., yn) is satisfied.
Because of the continuity of the function g this inequality is also satisfied in the set
N(y1, .-y yn)ND, where N(yi, ..., yn) is some neighbourhood of the point (y1, ..., ).
However, using (5.15) we conclude that in this set there is a point (Y10, Yno)
at which the inequalities (V%) fi(¥10,---»¥no) > 0 hold, and by the premise of the
<=-part we also have the inequality g(%10,...,Zn0) < 9(¥10, .-, Yno). The proof is
completed, for we have obtained a contradiction.

We now show that under the condition (5.15) the considered problem of optimiza-
tion can be reduced to the problem of Class 5.1. Indeed, we have the following
chain of logical equivalences

5) Usualy in the literature the set A is called a feasible set.
)Instead of (Vy; € [aj,b;]), (Vi € {1,...,k}) we write shortly (Vy;), (Vi) respectively.
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(Vi) (1,1 %n)) 2 OA (Vu1) ... (Yyn) [(VE) filyr, s yn) 20
= g(Z1, s Zn) < 915 o0, Yn)]

(This is the formula which corresponds to the considered problem)

& (Vi) fiz1, -, 2n)) 2 OA (V1) oo (V) [(V0) fi(yr, -orsyn) >0
= 9(117 "'11711) < g(yla <y yn)]

(Using (5.15))

& filz, ...,.'En) >0A (Vy1) voe (Vrn) [(31) f,'(yl, vy Un) <0
Vg(zli ...,Zn) < g(yly w4 yn)}

(For: (p = q) & —p Vg, etc.)
The proof is completed, because we have obtained a positive <-formula. So, we can
apply a procedure of type (5.1). Accordingly, the definition of feasible Cartesian
products of r-cells reads:
(5.17)A Cartesian product X1 x ... x Xy, of r-cells X; is feasible if it satisfies the
following conditions?)
() (Vie{l, . ENMHE x .. xXn)2>0
(i) (VY1 € Dr ([a1,01])) ... (V¥ € D ([an, bal))
(Vie {1,...khm(fi) (1 x...xY¥3) >0
= m(g) (X1 X ... x X,) < M(g) (Y1 ¥ ... x ¥3,)
In the spirit of the solving procedure if the set A is empty then at some step r it
will happen®) fis(r) = 0.
As in Problem 5.1 now we may also use the fact of the form (5.9). In other words
in (5.17) we may replace the part

(VY; € D ([a1,b1])) - (Y¥y € Dy ([an, ba]))
by the following
Y(Yi, . Ya) € (Fi_i N (Dr((a1, b % ... % Dr([an, b))

In such a way for-loops of the variables Y; are profoundly diminished. Similarly
as in Problem 5.1 under certain conditions we may add new requircments to the
feasibility criterion. So, suppose that each of the functions fi,..., fi, g satisfies a
condition of type (5.10) and the function g attains the minimum value at some
point, which is an internal point of the set A. Then to the conditions (5.14) 1°, 2°
we may add the following equations

8y dg
(518) Bar = Bay O

7)In the formulation of (ii) the tautology (-pV q) € (p = ¢) is employed.
8)Recall that fis(r) is the number of all feasible r-cells.
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Accordingly, the feasibility criterium should have also these requirements

0g o]
m(a—xi) (Xlx...xXn)gogM(ai)(Xlx...xXn)

Remark 5.2. If we replace (5.13) in Problem 5.2 by the following disjunction
fi(®y, o 22) 20V LV fi(@1, 0 0) > 0

we get a new problem which can be solved in a similar way as Problem 5.2 (such a
problem belongs to the disjunctive-optimization problems).

Probl.em 5.3. We get this problem from Problem 5.2 by replacing (5.18) by the
following conditions

(5.19)  fi(z1,...,zp) =0, ..., fo(z1, ey Tn) = 0
Jor1(z15020) 2 0,00, fi(z1, o0, 2) > 0 (821, k>5)

No?v the set A is defined as the set of all points (z;, ) € D satisfying (5.19).
This problem is more complicated than Problem 5.2. In order to see this fact better
suppose § = Lk = 2,n = 1. So, briefly said we seek the values z € D = [a,b]
satisfying the conditions ,

(*1) fi(@) =0,(Yy € D) (/1(y) =0, £2(y) > 0 = 9(z) < g(x)))

Recall that the general definition of the feasible cell (i-e. Definition 4.2) is logically
based on the fact (4.4) namely on the its part

(*2) o(@1,.) = molp) (Co(z), )
Accordingly for the second formula in (*1) we have the following argument
This formula is logically equivalent to

(Vy € D) (f1(y) >0V /i(y) <OV fo(y) <OV g(z) < o(y))
and in view of (*2), i.e. by Definition 4.2. a cell A € D,(D) is feasible iff
it satisfies the condition

(VY € D(D)(M(f1)(Y) > 0Vm(fi)(¥) <0

Vm(£2)(Y) < 0vm(g)(X) < M(g)(Y))
i.e. the condition

(VY € Dr(DNM(71)(Y) < 0,m(A1)(Y) 2 0,m(f2)(Y) > 0
= m(g)(X) < M(g)(Y))

which is obviously useless; since from M () <0, m Y)>0i
: <0, 0it
follows that fi(y) =0 forally € V. e tE

However, about the second formula in (*1) we also have the following argument

Omitting the part (Yy € D) from the formula we obtain the implication
(*3) H) =0,£) 20 = g(z) < gy)
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Suppose that yo € D is any solution of f1(y) = 0. Putting y = yo from (*3)
the implication
f2(y0) 20 = g(z) < g(yo)

follows, which is logically equivalent to

fa(yo) <0 V g(z) < 9(v0)

Let X, Yy be elements of D,(D) such that © € X,y € ¥y. Then using only
axiom (0.1) we obviously have the implications

f2(yo) < 0= m(f2)(Yo) < 0;  g(z) < g9(wo) = m(g)(X) < M(g)(Yo)

from which the following implication

(f2(yo) < 0V g(z) < g(w0)) = m(f2)(¥o) <0V m(g)(X) < M(g)(¥o)
follows.

In fact this implication is an example of the general implication (*2). Now denote by
Sol.(D) the set of all Y € D,(D) which have at least one solution of the equation
fi(y) = 0 with y € D. Then in virtue of the proved implication we have this
implication

(Vy € D) (f1(y) =0, f2(y) 2 0 = g(=) < ¢(v))
= (VY € Sol-(D)) (m(f2)(Y) > 0 = m(g)(X) < M(g)(Y))
This implication provides a new idea how to define the feasibility criterium. Let us

stop this argument and pass to the general case. About conditions (5.19) we put
the following assumption (like (5.15))

(5.20) If k > s and at some point (21, ...,Z,) € D the formulas

fl(xla---,:rn) = 0: essy fg(.’L'l,...,IE") = 0:
for1(@1, 00 20) 20, ooy fi(21,0,70) 20

are satisfied then in each neighbourhood N(xy,...,zs) of this point there
is @ point (T10,.--» Tno) € D satisfying the formulas

fl(mlm -nyxna) =0, .., fa(-’rlm '"1In0) =0,
fs+1($10, ...,.’l)no) - 0, wxing fk($107"'7zn0) > 0.

Using this assumption one can prove®) the following equivalence (like (5.16))

(5.21)

(V (3/17 -")yn) € D) [(fl(yh'": yn) = Ov --~f8(y1) ---1yn) = O; f8+1(y1, -sy yn) Z 07---1
fk(ylv erey yn) Z O) = g(xl,"': Zn) S g(yll weny yn)]

is equivalent to

Y (Y1, s yn) € DY [(Fr(W1y s Un) = 0, o fs(Y1, s yn) = 0, fog1 (¥1, - n) > 0,y
fk(ylw--’yﬂ) > O) = g(mlr")xﬂ) < g(ylv"'ayn)]

9 See the proof of (5.16)
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Now denote by Sol.(D) the set of all cells X € D.(D) which have at least one
solution of the system f; (z1y.0y @) = 0, .., fo(z1, ..., ) = 0. Then we have the
following definition

(5.22) An element X € Sol (D) is feasible if it satisfies the following condition
(VY € Sol (D)) (m(fe1)(Y) > 0,...,m(fe)(Y) >0 = m(g)(X) < M(g)(Y))

The corresponding solving procedure is quite similar to (5.1). The set of all solutions
is equal to [,y Fy, which is not difficult to prove.

However, the main problem is how to determine Sol,(D). In other words how to
find a condition Cond(A) such that the equivalence

A cell A has at least one
solution of the system &  Cond(A)
_fl(.'lil, ...,.’L‘n) = 0, casy fs(zh ...,.'En) =0
is true. Roughly speaking, some ”parts” of Cond(A) may be, for instance:

(3) A is is ”small enough”.
(ij) For each of the functions f;(i < i < s) there are two vertices V1, V2 of A such
that f;(V1)- fi(V2) <0

Now we are going to give another idea about Problem 5.3, by which this problem
can be solved approximatively. Namely, let € > 0 be a given "small” real number.
Replacing (5.19) by the following inequalities

(5.23)

f1($1, ...,Zn) Z —E,fl(:vl, ...,:L'n) S Ey ey fa(Il, ...,In) 2 —-£, fs(zl, ...,xn) S £
for1(@1,0020) 20,y fi(F15 00, Tn) 20

from Problem 5.3 we obtain a new one, denoted by: Problem 5.3(g). This Problem

5.3(¢) has two basic properties:

(i) It is a problem of Class 5.1 with a <-positive formula.
(i) Depending on the magnitude of €, the solutions of this problem are approxi-
mative solutions of the original Problem 5.3.

At the end we are interested in conditions like (5.18) which may be added to feasi-
bility criterion. Suppose that each of the functions fi,..., fx, g satisfies a condition
of type (5.10). First we consider the case k = s when (5.19) reads.

(5.24) Filgiyeny®n) = Q5o JalTi5 50 ) = 0

Let M be the following matrix

BQL by B9
zy Oz2 Oz,
8f1 8fr 8f1
8z1 Oz2 Oz
gb_ s Sfs
T 8z Ozp



whose members are calculated at some point ¢ belonging to the set!®) S. Denote
by Mi, Ms, ..., Mz all the minors of the matrix M which contain some elements of
the first row of M and whose order is'*) min(n, s + 1). Then:

At the point ¢ all the equalities
(5.25) M;=0,.. M =0
are satisfied.
This is a classical result, a generalization of (5.18).

We notice that in order to solve Problem'? 5.3 we can use equalities (5.25) in
several ways:

19 If we use the method of the feasibility criterium (5.22) we can for X € Sol.(D)
require the following conditions

m(M;)(X) <0< MM)(X) (i=1,...1)

too.
20 If we use the method by g-approximation, when inequalities (5.23) are in-

volved, then we can to them include the following inequalities
M;>—e, M;<e (i=1,..,1)
39  Another way to solve the problem is to solve the system of equations
(5.24) plus (5.25)

and after that among the solutions to find points at which the function ¢
attains the minimum value.

Finally we point out that equalities (5.25) are also satisfied in case of conditions
(5.19) when & > s, but under the following assumption

At a point c€ S are satisfied the conditions
fl(c) = O: "'7fs(c) = 01 fﬂ-H(c) > 07 :fk(c) >0

Problem 5.4. Now we consider the general problem of Class 5.1 allowing that in
the formula  the operators of type

minze[a.b]) mMaXgela,b)

may occus. For instance, such a @ is the formula:

* ni Y, 2) < g
) gy, oo, f(z,9,2) < zrél[ﬁ]y(f)

where f,g are given m-M functions.
10)Recall, S is the set of all points at which the function g attains the minimum value,
under the condition (5.19) i.e. (5.24).

11)Of course, t is a copstant, which can be easily calculated.
12)Instead of (5.19) we have equalities (5.24)
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}I]Iolzilever, the new Class 5.1 is not wider than the old one, for the following fact
olds: '

(5.26) For any positive <, <-formula @ containing the operators min, max one can
effectively find a new positive <, <-formula ¢’ such that @' contains none of
the symbols min, max and ' is logically equivalent to ©.

The proof is based on the following general facts:

Lemma 5.1. Let f : [a,b] = R be a continuous function. Then:
1  Forsomeede [a,b] the equalities

fle)= min f(z), f(d)= max f(z)

z€&[a,b] z€[a,b]

hold.
20 For any real number p the following equivalences

P> z’é}i‘.’a] f(z) ¢ (3z € [a,b])p > f(z)
p< Z{Er}i;}b] f(@) & (Vo e [o,b])p < f(z)
p> L f(@) & (Vz € [a,b])p > f(z)
PE o f(z) & (3r € a,b)p < flo)

hold. Also in these equivalences one may replace the symnols >, < by >, < respec-
tively'® . : o 7
We shall demonstrate the idea of the proof of (5.26) by the following example.
Example 5.1. Let f : [a1,b1] % [a2,82] = R be a given m-M function. Find

* min max ,
z1€[a1,b1] z2€[as,ba] f<x1 » %2)-

Solution. In order to do this, we solve in ¢; € [a1,bi], c2 € [22,b0] the following
equation & J

(F%
(**) fler,c2) = min max . f(z1,z
’ zlE[ahbx]IzE[az,bz]f(71, 2)'

The elimination of the symbols min, max is as follows

]?(Cx, CZ) = minm €la1,b1]) max:c;E[az,bz] f(l'la 232)
E=4 (V$1 € [al,bl]) f((:l,Cg) < ma‘xzzelaz,b;_] f($17-772)
& (Vo1 € [a1, b1]) (372 € [az, b2]) fler, c2) < flz1,22)

13)For instance, we have the following equivalence

p> zgl[ir;b] f(z) & (3z € [a,0]) p > f(x)
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Consequently the related definitiion 6f feasible Cartesian products reads
C; x Cs is feasible

& (VX € Crlay, bi]) (3X2 € Crlaz, ba]) m(f) (C1 x C2) < M(f) (X1 x X3)
Remark 5.3. (due to E.Agovi¢). In order to find (*) we do not need to find all
c1,¢2 in (**). Having this in mind, for ci,c2 we impose the following additional
condition

fle,e2) = zzg[lﬁcbz] fler,z2)

Consequently to the feasibility criterium we add this request
(VX2 € Crlaz, b2]) m(f) (C1 x X2) < M(f) (C1 x Ca)

Remark 5.4. In a way similar to that employed in Example 5.1 one can generally
find

(mazy) (mazs) ... (Mpzy) f(T1, 00y Tn)
where f : D — R is a given m-M function and the symbol (m;z;) stands optionally
for '

or

min min
zi€[ai,bi] z; €[ai,bi]

Problem 5.5. This problem belongs to the Interval Mathematics. Namely,
consider the general problem of Class 5.1 supposing that in the formula ¢ some
constants ¢y, cz, ..., Ck appear which we do not know ezactly. Instead, we are given
certain constants L;, R; such that L; < ¢; < R; (1 = 1,2,...,k). Accordingly, the
formula @ will be alse denoted by ¢(cy, ...,cr). A problem of Cluss 5.1 with such a
@ will be called:

5.1-problem wih boundaries L; <c;<R; (i=1,..,k)

As we shall see any such problem can be translated to a genuine problem of Class 5.1
(see (5.27), (5.28) below). To prove this, let us first consider any 5.1.(ii)-problem.
For instance, such a problem is stated in

Example 5.2. Ezamine the truth of the formula
(Vz € [14,1.5]) 22 > 1.8...
where 1.8... is a constant satisfying the boundaries
1.8<18..<1.9

Solution. Obviously this problem is logically equivalent to the following problem
of Class 5.1.(ii)

Is the formula (Ve € [1.8,1.9]) (Vz € [L.4,1.5]) 2% > ¢ true or false
Generally:
(5.27) A problem:

Is the formula p(cy, ..., cx) with boundaries L; < ¢; < R; true or false
is logically equivalent to the problem

Is the formula (Vey € [Ly, Ri)) ... (Yo, € [Li, Ri]) pler, ..., i) true or
false.

Now we shall treat 5.1.(i)-problems with boundaries L; < ¢; < R; (i = 1,...,k).
For instance, such a problem is encountered in

Example 5.3. Find z € [1,2] such that * = ¢ where ¢ is a constant with these
information 1.69 < ¢ < 1.96 only.

Solution. Obviously the best information on z is expressed by the inequalities
1.3 £ z < 1.4. This conclusion can be divided in the following two implications

The first reads:

(*)  For all ¢ € [1.69,1.96] the implication z° = ¢,z € [1,2] = 1.3 <z <14 is
true.

The second reads:

(**) Ifz, with 1.3 < z < 1.4, is any number then for some ¢ € [1.69,1.96] the
conditions z* = ¢, z € [1,2] are true.

Notice that about (*) we have the following reformulations
(*) < (Vc€[L69,1.96) (2 =c,z€[1,2] = 1.3<2<14)

< (Ice[1.69,1.96])) (P =c,z€[1,2]) = 1.3<z<14
(By applying the following logically valid formula

(V) (ale) = B) & ((3c) alz) = B)
provided that c is not a free variable in .)
On the other hand, about (**) we have
(**) & (13<s<14=> (3ce[1,69,1.96])2? = ¢,z € [1,2))
Combining the obtained results we have the following equivalence
132<14e (3c€[1.69,1.96)2° = ¢,z € [1,2]
Consequently we have the following conclusion:

The problem stated in Example 5.3. is logically equivalent to the following
problem:

Find z € [1,2] such that the formula (3¢ € [1.69,1.96]) 2% = ¢ is true.

The reasoning employed in this example can be transfered to any 5.1.(i)-problem
with given boundaries L; < ¢; < R;. Namely:

(5.28) Any 5.1.(i)-problem with given boundaries L; < ¢; < R; (t =1,..,k) is

logically equivalent to the following problem (of Class 5.1.(3))
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Find all value of z; € I(z;) (i = 1,...,k) such that the formula
(3(:1 € [Ll, Rﬂ) (Eck £ [Lk,Rk]) L,D(Cl, ...,Ck)

is satisfied.

Problem 5.6. Let A, B C R be given sets and p(z,y) a positive <-formula whose
free variables are z,y. Suppose that the formula

() (Vz € A) Gy € B) p(z,y)
is true. How can we determine for y the best'®) constants c1,c2 € R such that the
double inequality c; <y < ¢z holds?

Solution. Obviously the implication

o(z,y) = c1 <y<ce (zisanyelement of A)
should be true. In other words we have the implication
’ (V2 € 4) (pla,9) = <y
which is logically equivalent to the following implication
(FTreAop(z,y)=>alyla

The meaning of the last implication is

If for some z € A the formula ¢(z,y) is satisfied then the corresponding y
must be between ¢1, ¢s.

According to this in order to solve Problem 5.6 proceed as follows
Take formula (3z € A) p(z,y) and solve it for y € B.

Applying procedure (5.1) we step-by-step obtain the set F} of all feasible r-cells,
by which we can approximatively determine the constants c;, cp.

Example 5.4. find z € [~7,25] such that the condition
(Vre0,4)Cye3)y’-2"=2

is satisfied.

Solution. The ordinary binary trees are used. The calculations are carriegi out
only up to step 7. The member of feasible cells is 2 in each step, and z satisfies:

8.75 < z < 9.25.

14)That means that inequality ¢; < y < ¢ is implyied by (*), but also for some z;,z2 € A
we have respectively ¢(z1,c1), p(z2,c2).
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6. FINDING FUNCTIONS AS SOLUTIONS OF A GIVEN m-M
CONDITION

In this section we state how approximatively to determine functions satify-
ing a given m-M condition®), which is some functional condition, or some
difference condition, or differential equation.

1. Let ¢(z,y) be a positive <-formula, quantifier-free, and whose free variables are

z,y. Replacing y by a term f (z), where f is a function symbol from the formula
©(z,y) we obtain

(6.1) (e, f(z))

which we shall call an m-M (functional) condition”. Let A,B C R be given
segments and f : A — B a function satisfying the condition (Yz € A) p(z, f(z)).
Then we say that f is a solution of condition (6.1).

In the sequel we are going to describe a procedure by which one can step-by-step
approximatively determine all such functions (if any exists). We shall use the
following denotations

* X will be a sequence of some subsegments (i.e. cclls) of the segment A. By
U(X) is denoted the number of its elements.

* IfPeX thenby F(P), Iy (P) will be denoted some sequences of subsegments
of the segment B; l(F(P)),I(F\(P)) are the numbers of their elements.

We also use the following convention:

Two segments of the forms [p, ql, [, s] are called neighbouring if ¢ = » o7
s=p.

In fact in the procedure we scarch certain solution z € A,y € B of ¢(z,y), having
in mind that y should be a function of z. The procedure reads:

(6.2)(1) If m(p) (A x B) is faise the procedure stops and the result is:
(6.1) has none §-solution.

In the opposite cuse we take:
WX)=1,X; = A I(F(A) =1,B is the unique element of F(A);
and go to (ii).

(i1) In turn we take P = X; (1< < 1(X)) and for each of them we do the
following:

From the sequence F(P) we form a new sequence Fy(P) consisting of
all elements Q € F(P) for which the condition m(e)(P x Q) holds. If
the sequence Fy(P) is empty then the procedure stops and the result is:

Y Throughout the section *m-M condition’ is a generalization of the notion *m-M equation’.
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(6.1) has none f-solution.

In the opposite case we first make unions of all neighbouring elements
of the sequence Fi(P) and in such a way we obiain o new sequence,
which we call F1(P) again®

After P = Xitxy is being processed we go to ().

(iii) In this step we have already determined the desire function f approzi-
matively:

Namely, for any © € A let P € X be a segment containing this <.
Then f(x) may be any number which is any element of some element

Of F1 (P) .
If we want to continue the procedure then we do the following:
First, for each P = X; (1 <i <I(X)) we do the following:

We decompose P into smaller subsegments, say Py, .., Pr and
temporarily extend the funciion Fy by the conditions

F(P) =..=F(P,)=F(P)

Let X, be the sequence of all such subsegments for all elements P € X.
Nezt, in turn to cach element P € X1 we consider the related sequence
Fy(P) end decompose all its elements into some smaller subsegments.
In such a way from Fi(P) we obtain a new sequence named F(P). We
put X = X1 and go to (ii).
In a similar way one can approximatively solve any functional condition like (6.1)
under this restriction:

All unknown functions have the same number of arguments.

For instance, the functional conditions

o(z, f(2),9(2)), (z,y,h(z,),k(z,¥),m(z,9))
(f, g, h,k,m are unknown functions)

belong to this class. However, the functional condition

(6.3) o(z, f(x),y,9(z,¥))

obviously is not a member of the class. Solving procedure for such conditions in
some details differs from procedure (6.2). For example to solve (6.3) we proceed as

follows:
We replace (6.3) by the following functional condition
50(:11, fl (z’ y): Y, g(zr y))

2)For instance, if Fi(P) is the sequence [1,2],(7,8],[2,3],[6,7],[3,4],[9,10] then the new
F1(P) is the following sequence [L, 4],[6,8],[9,10]
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wit_h two ur.tknown functions® fi,g. Then using a procedure like (6.2) we seek those
of its solutions which are solutions of (6.3) too. Namely, suppose that in some step
for = and y we have all together the following subsegments

X1,y Xpy Vi Yy
respectively. Let P = X; be any of these X1, ..., X,. To define the sequence?) F(P)
we consider all sequences
* R(P Y1), H(BY,)
and then: any subsegment [a,b] is an element of F(P) if and only if®) this subseg-

ment belongs to each member of the sequences (*). If F(P) is empty® sequence the
procedure stops with the conclusion that (6.3) has no solutions.

2. Let now ¢(z,y,2) be a positive <-formula, quantifier-free, whose all free vari-
ables are z,y,2z. Replacing y, z by the following terms f., fo1x respectively from
the formula ¢(z,y, z) we obtain

(6'4) So(z,fz’fz+h)

which we are going to call "an m-M difference condition”. Concerning (6.4) the
main problem is:

(h is a given positive constant)

(6.5) Leta,a',b (with a < b) be some given real numbers. Giving to x and f, initial
values a,a’ respectively determine a finite sequences (if any exists)

fa7 fa+h;"-’fa.+nh (a+nh 18 b)

such that (6.4) is satisfid for every z € {a,a +h,...,a+ (n — 1)h}.

In the sequel we shall describe a procedure by which one can approximatively
determine all such sequences”, under the restriction that fas fathy oy fatnn belong
to a given segment B C R.

As a matter of fact problem (6.5) is logically equivalent to the following:
(6.6) Solve for fatn, .., farnn € B the system

w(a,a’, forn),
‘P(a + Ry fotn, fa+2h.),

pla+ (n—1)h, forin1)n, fatnh)

3)Both of f1 and g are functions of 2 arguments.
e 4) Of course, its elements are some subsegments which approximatively determine the func-
won f.

5)This is a way to express that fi(z,y) should not be a function of y.

6)i.e. with no members.

7if any exists
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The procedure reads:

.(6.7) Using a procedure of type (5.1) we approzimatively solve for®) foin the first
formula, i.e. the formula w(a,a’, fotn). In such a way we obtain as the result
some set Fyyp-union of some subsegments®) of the set B. Next, we go to the
second formula (a+ R, foth, faron) which we shall solve for foion under the
assumplion foyn € Fayn. In other words'®, we need to solve for foion € B
this formula

(3y € Fasn) 9(a+ h,y, fas2n)
Again we apply a correspending procedure of type! (5.1) and for fopon we
determine some set fyyon-union of some subsegments'? of the set B. Sim-
ilarly we proceed with the remaining formulas w(a + 2h, foran, fat3n), -
o(@a+ (n — DR, far(n=1)i> fatnn). So, solving the formula

(3y € Fatan) 9(a + 2h,y, fatan)
we obtain the set F,y3p; solving the formula
(3y € Fossn) p(a+3h,Y, fatan)

we obtain the set Fyy4n, and so on. Finally, the desired sequence is approzi-
matively determined by these conclusions:

fo= a’, fotn € Forpy ooy fa+nk € Fatnn

Of course, it can happen that for some i the set F; is empty, when the proce-
dure should be stopped with the conclusion that the desired sequence does not

exrist.
We point that besides (6.4) one can in a similar way solve various other difference
conditions like ¢(z, fz, fo+h, fo-+21), and so on.

3. In this part we state a procedure by which one can approximatively solve «
given differential equation. Let

(6.8) Elz, f(z), f'(z)) =0

be a given differential equation having a solution f : A = B. Denote by C a sut
with the property
FiryeC whenever z € A

Suppose that there exists f”{z) for z € A, and that the function E(z,y,2) (with
z € A,y € B,z € C) is differentiable. Additionally suppose
N 8)This means that we use the solving procedure up to some step r, and this r is of ou.

choice.
9)In fact these subsegments are corresponding feasible cells.

10)Gee Problem 5.5, Example 5.3.
1) yup to some step r, T is a number of our choice.
12)]n fact, they are corresponding feasible cells.
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(6.9) There are positive constants K, Ko such that

0E
o [ <Ki If'(@)l < Ko

Joreveryz € A,ye B,z€C.
Then one can immediately prove the following assertion

Ifz and x + I (with h > 0) are any elements of A then the inequality

(6.10) 'E (z (@), M;);;&) ’ < KiKzh

holds.

From inequality (6.10) one can easily get an idea for solving equation (6.8). Namely,
first suppose that E(z,y,z) is an m-M function. Then to (6.10) one can assign the
corresponding m-M difference condition, say expressed in this manner!3

(6.11) <K Kyh

E (:1:, f-'b': % (fz+h - fz))

In such a way we obtain an example of the difference conditions of type (6.4).
C(_)nse,quently we can apply a procedure of type!¥(6.7). Of course, in order to do
this we have to know the constants K, K, in advance. About K1 it suffices to

8E |
suppose that 5 is an m-M function. To find K, briefly said, one can besides
equation (6.8) employ the equation

0E  OE,  OE.,
62+_@f3’+~é—‘_;fz_o

Al the end we emphasize that by solving difference condition (6.11) we in fact
approximatively determine all solutions of differential equation (6.8) with initial
condition f(a) = a'. But, if solving procedure stops then we conclude that equation
{6.8) has none such solution.

13)Now, £ is used as a sequence-symbol.
4)The members a,b are determined by the set A, while a,h (with ¢’ € B,h > 0) are of

our choice.
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7. APPENDIX

This part contains a new much simpler proof of Theorem 4.3

Let ¢(z1,...,2m) be a < —positive formula for which z,...,z,, are all its free
variables, and ¥1,...,yx all its bounded variables. Suppose that to each of the
segments I(z;), I(y;) one cell-decomposition is assigned (see Definition 1.2). Our
aim is to simplify the formula ¢ in the following sense: to find a term t such _that o
becomes equivalent to the inequality t > 0 and also that ¢ and t > 0 have equivalent
m-M pairs with respect to Definition 4.1.

First, let ¢'(z1, ..., Tm) ‘be a prenex form of ¢(z1,..., Tm), i-e. a formula equivalent
to ¢ and having the following form

(7.1) (qyr € I(y1)) - (qeys € I(yx)) % (Y1), ¥, T1y ooy Trm)

where each of g; is one of the quantifiers and ¢ is quantifier-free. For instance, if ¢
is the formula,

1 (21, A fa(z1) <1) V [fi(z1,22) < f3(z1,72))
[(Vy1 € I(11)) fi(z1,91) < fa(1) A falan i I(ylz))}g(;2’z2)s< }2(;)

then a prenex form of it is

I Jyz € I(y2)) [filz1,11) < fa(y1) A fa(z1) < 1)
i € ) G < e \E 1[;1(111, Zg) <2f3(x1,l‘2§] 1/\ f3(y2,72) < fa(z1)

Bearing in mind Definition 4.1 it is easily seen that for every r = 0, 1, ... the
following equivalences

Eq(¢, ¢ M ($)(Cr(21), s Cr(zm)) +— Mo (8")(Cr(21), ..., Cr(Tm))
e mr(¢)(C,(::1),...,C,.(mm)) — me(¢')(Cr(z1), .., Cr(zm))

hold. In the next step using the functions maz(z,y), min(z,y) we shall eliminate
the logical connectives A, V. Namely, by means of the following equivalences

A<B ¢« B-A>0
A>0AB>0 +— min(4,B) >0
A>0VB >0 +— maz(A,B) >0

the formula 4 in (7.1) can be transformed to a formula of the form

g(yl, vy Yk, Z1, -"»-T:m) >0

where the term g is built up by using mtn and maz. In such a way from the formula
(7.1) we obtain the following equivalent formula

(7.2) (@ € I(w1)) - (e € I(yr)) 9(y1, s U, T2y ooy Tm) > 0

briefly denoted by ¢"(z1, ..., zm). Now again bearing in mind Definition 4.1 is easily ;
seen that the equivalences of the form (Eq(¢, ¢')), i. e. the equivalen.ces ;
(Eq(¢', ¢")) are satisfyied. Next, using the operators of the form min,cy(y),
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MaTzer(zy We are going to eliminate the quantifiers. Namely, we assign to the
formula (7.2) the following formula ¢

(*1) /‘l'(ql)ylef(yz) /"(Qk)ykel(yk) g(yla"'yykazla "';xm) >0

where the mapping y is defined by: p(V) = min, #(Z) = maz. For instance, to the
formula (Yy, € I(y1))(3y2 € I(y2)) 9(y1,y2,71) > 0 the corresponding formula
reads minylel(yl)mazyzg(yz) 91, y2,71) > 0.

Between (7.2) and (*1), i.e. ¢" and ¢ there is the following equivalence
(73) (QIyl € I(yl)) e (qkyk S I(yk)) g(yll"‘7 ykyxla"'azm) >0
A H(Q1)y1€1(m) p‘(qk)llke-r(!/k) g(y17 Yk Tl eeny .’Em) >0

For instance, concerning the given example above we have the following equivalence
(x2) (Vy1 € I(11)) (32 € I(2) 9w, ¥2,71) > 0

2 Mminger(y)maty,er(y,) 9(y1,v2,71) > 0
Equivalence (7.3) follows immediately from the following general equivalences
(x3) (i) (Vz € |a, b)) f(z) >0 +— Milgelep) f(z) >0

(#1) (3z € [a,8]) f(z) > 0 +— MaTeefap) f(z) >0

where a, b are any reals and f : [a,b] & R a continuous function. For instance,
such a proof for (2) reads

ANy, €1(y:)MATyse 1 (ys) 9(Y1,Y2,T1) > 0
— (Vo1 € I{y1))mazy, cr(y,) 9(v1,2,71) > 0

— (Yu1 € I(11)) By2 € 1(v2)) 9(y1,42,21) > 0
since mazy,er(y,) 9(W1,42,21) >0 +— (3yz € I(y,)) 9(y1,92,21) >0

In the next step we shall define an m-M pair for the formula ¢'"". This formula has
the form ¢ > 0. For this ¢ we define an m-M pair by the following equalities

(x4) m(t)(C(z1) x ... x C(zm))

= ﬂ(‘h)l’levr(l(m)) N(Qk)ykev,(r(yk)) m(g)(ra X XY XC(21) X ...XC (2 m))
(x5) M()(C(zy) % ... x C(zm))

= .U('QI)YIGD,(I(yl)) ,U(QIc)Y,,eD,(I(yk)) M(g)(Yl X XY XC(21)X... XC(zm))

It is not difficult to prove the correctness of these definitions using induction on the
number k. We will explain two basic steps in case k = 1 concerning the formula
(x4). Namely, in that case we should prove the following inequalities

(%6) My €1(51) (Y1, 1,y vy Tyn) > Miny, ep, (1(3,))M(9) (Y1 x C(z1) X ... X C(z1m))
(+7) mazy, e1(4)9 (U1, %1, -, Tm) > My ep, (1(41ymg) (Vi x Clm1) X .. x C(zm))

One proof of (+6) reads. Suppose that  and Z1, ..., T, have some fixed value. Then
9(¥1,%1, ..., Trm) as a function of y; attains its minimum at some point ¥} € I(y;).
Thus, we have the following argument
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7niny1el(y1)g(y1a L1y eeny wm)

= g(yi 3Ty ooy Im)

> m(g)(C(y1) x C(z1) X ... x C(zm))

2 minylEpr(l(yl))m(g)(yl X C(]Jl) > J C(Im))
One proof of (+7) reads. Suppose that r and zy,...,Zm have.a some ﬁxed. value. Thegr)l
m(g)(YV1xC(z1) X...xC(2m)) for some Yy € D.(I(y1)) attains the maximum value
Thus, we have the following. argument

maz}qepr(l(y,))m(g)()’l x C(z1) X ... X Czm))

=m(g)(Y{ x C(z1) X .... x C(z,))

< 9(y1, 71, Tm)  (for some y; € I(y1))

< mazy, EI(yl)g(ylv L1y eeey .'Ijm)
Bearing in mind (#4), (*5) and Definition 4.1 we see that m.(¢"")(C(z1),....C(zm)), ]
Mo (8" (C(21)-,C 2 m)) BT M(£)(C(21)X ... XC(2m))>0, m(£)(Clz1)X ... XC(zm))>0 FESPEC
tively.
Next, we p(;int out that we again have an equivalence of type Eq(o,¢"), na.rnelly the
equivalence Eq(¢",¢""). This fact follows from the following general equiva ex}ig?ﬁ
on reals (Vie{l,n})a;>0—mine {1,n}ai >0, and (Fie{1,n})a: >0—maz;c(1,n)a: >0, WhHIC
together can be written in this way

(*8) (gi € {1,n})a; >0 +— p(q)icf1,nyai >0,  where g€ {V,3}
Hence, for M, (¢"")(C(z1), ..., C{zm)) we have the following equivalence chain

M (¢")(C(z1), -, C(Tm)) 8.1} 30
m(t)(C(zy) X ... X C(zy,
: [.L(E]l))(yliplr)(l(yl)) p‘(q’c)YkE’Dr(I(yk)) m(g)(le...xYkxC(zl)x.".xC(zm))>0
—— (Y1ED-(I(11)) --. (@Y E€D-(I(yx)) m(g)(Y1X..x¥i XC(z1)X...XxC(zm))>0
(by (x8))
According to (7.2) and Definition 4.1 we obtained M,((}S")(C(xl),’;.., C(zm)) .- Ina
similar way one can prove the equivalence m,(¢"')(...) +— m.(¢")(...) too.

Now we shall prove Theorem 4.3. It suffices to prove part = —,part of’ :(]) onl)j.” So,
let be ¢(z1, ..., Tm). We have proved the equivalences ¢ +— ¢' +— @' +— ¢ so(j
we conclude that ¢'"(z1,...,Tm) holds. Further,q&f" has the form t(zy,...,zm) >
which implies that ¢(zy, ..., ) is positive. By axioms (0.1), .
(0.2) we conclude that there exists r € N such that m(t)(C,(zl)'x...xC,.(:rm.))>0 1 -
so holds. Thies yields that M,.(¢"")(C(zy),...,C(z:n)) holds. Since, we 'hd\ée ;cnle
equivalences M,.(¢'")(...) +— M (¢") +— M.(¢")(...) =} M, (¢)(..) we finally
conclude that M, (¢)(C(z1),...,C(@m)) holds and the proof is complete.

2)The set Dy (I(y1)) is finite
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