PUBLIKACIJE ELEKTROTEHNIC̈KOG FAKULTETA UNIVERZITETA U BEOGRADU publications de la faculte d'electrotechnique de l'universite a belgrade

SERIJA: MATEMATIKA I FIZIKA-SERIE: MATHEMATIQUES ETPHYSIQUE

№ 155 (1965)

REMARK ON THE CONVERGENCE OF A SEQUENCE*

Milosav Marjanović and Slaviša B. Prešić

In the present note we give a considerably simplified proof of a theorem proved in [1]. Also an unnecessary assumption from [1] is omitted.

Let E be a complete metric space, $f_{n}: E^{k} \rightarrow E$ a scquence of mappings of the product space E^{k} into E such that

$$
\begin{align*}
& d\left(f_{n}\left(u_{1}, u_{2}, \ldots, u_{k}\right), f_{n}\left(u_{2}, u_{3}, \ldots, u_{k+1}\right)\right) \leqslant q_{1} d\left(u_{1}, u_{2}\right) \tag{1}\\
&+ q_{2} d\left(u_{2}, u_{3}\right)+\cdots+q_{k} d\left(u_{k}, u_{k+1}\right)
\end{align*}
$$

for every $u_{1}, u_{2}, \ldots, u_{k+1} \in E$, where $q_{1}, q_{2}, \ldots, q_{k}$ are non-negative fixed numbers such that $q_{1}+q_{2}+\cdots+q_{k} \leqslant q<1$.

Let
(2) $\quad d\left(f_{n+1}\left(u_{1}, u_{2}, \ldots, u_{k}\right), f_{n}\left(u_{1}, u_{2}, \ldots, u_{k}\right)\right) \leqslant a_{n} \quad(n=1,2, \ldots)$, where $a_{n},(n=1,2, \ldots$,$) are positive terms of a convergent series. (In [1]$ it has been supposed that $\lim _{n \rightarrow \infty} \inf \frac{a_{n+1}}{a_{n}}=1$). It is easily seen that the sequence $f_{n}, n=1,2, \ldots$ converges uniformly to a funct:on $f: E^{k} \rightarrow E$.

We prove namely the following:
Theorem. Let

$$
x_{n+k}=f_{n}\left(x_{n}, x_{n+1}, \ldots, x_{n+k-1}\right), \quad(n=1,2, \ldots),
$$

where the elements $x_{1}, x_{2}, \ldots, x_{k}$ are arbitrarly chosen. Then, if the conditions (1) and (2) are satisfied:

1. The sequence x_{n} converges in E.
2. The equation

$$
x=f(x, x, \ldots, x)
$$

has a unique solution $x=\lim _{n \rightarrow \infty} x_{n}$.
Proof. 1. Putting $\Delta_{n}=d\left(x_{n}, x_{n+1}\right)$, then by conditions (1) and (2) we get the following system of inequalities
(3) $\Delta_{n+k+i} \leqslant a_{n+i}+q_{1} \Delta_{n+i}+q_{2} \Delta_{n+1+i}+\cdots+q_{k} \Delta_{n+k-1+i} \quad(i=0,1,2, \ldots, s)$.

[^0]Adding together the inequalities (3) and putting $\sigma_{n+k+s}^{n+k}=\sum_{v=0}^{s} \Delta_{n+k+v}$, we easily find that

$$
\sigma_{n+k+s}^{n+k} \leqslant \sum_{v=n}^{n+s} a_{v}+q \sigma_{n+k+s}^{n+k}+q\left(\Delta_{n}+\Delta_{n+1}+\cdots+\Delta_{n+k-1}\right)
$$

Therefore,

$$
\begin{equation*}
\sigma_{n+k+s}^{n+k} \leqslant \frac{1}{1-q} \sum_{v=n}^{n+s} a_{v}+\frac{q}{1-q}\left(\Delta_{n}+\Delta_{n+1}+\cdots+\Delta_{n+k-1}\right) \tag{4}
\end{equation*}
$$

From

$$
\lim _{n \rightarrow \infty} \sup \Delta_{n+k} \leqslant q_{1} \lim _{n \rightarrow \infty} \sup \Delta_{n}+\cdots+q_{k} \lim _{n \rightarrow \infty} \sup \Delta_{n+k-1}
$$

i. e.,

$$
\lim _{n \rightarrow \infty} \sup \Delta_{n} \leqslant q \lim _{n \rightarrow \infty} \sup \Delta_{n},
$$

we find that $\Delta_{n} \rightarrow 0$, as $n \rightarrow \infty$. Letting $n \rightarrow \infty$ in (4) we obtain

$$
d\left(x_{n+k}, x_{n+k+s}\right) \leqslant \sigma_{n+k+s}^{n+k} \rightarrow 0
$$

Being E complete, the sequence x_{n} converges, i. e. $\lim x_{n}=x_{0}$.
2. Applying triangle inequality, we get

$$
\begin{aligned}
& d\left(f\left(u_{1}, u_{2}, \ldots, u_{k}\right), f\left(u_{2}, u_{3}, \ldots, u_{k+1}\right)\right) \leqslant d\left(f\left(u_{1}, u_{2}, \ldots, u_{k}\right)\right. \\
& \left.f_{n}\left(u_{1}, u_{2}, \ldots, u_{k}\right)\right)+d\left(f_{n}\left(u_{1}, u_{2}, \ldots, u_{k}\right), f_{n}\left(u_{2}, u_{3}, \ldots, u_{k+1}\right)\right) \\
& +d\left(f_{n}\left(u_{2}, u_{3}, \ldots, u_{k+1}\right), f\left(u_{2}, u_{3}, \ldots, u_{k+1}\right)\right) \\
& \leqslant 2 \sum_{v=n}^{\infty} a_{v}+q_{1} d\left(u_{1}, u_{2}\right)+\cdots+q_{k} d\left(u_{k}, u_{k+1}\right)
\end{aligned}
$$

wherefrom, as $n \rightarrow \infty$ we get

$$
d\left(f\left(u_{1}, \ldots, u_{k}\right), f\left(u_{2}, \ldots, u_{k+1}\right)\right) \leqslant q_{1} d\left(u_{1}, u_{2}\right)+\cdots+q_{k} d\left(u_{k}, u_{k+1}\right)
$$

Now, we have

$$
\begin{gathered}
d\left(f_{n}\left(x_{n}, x_{n+1}, \ldots, x_{n+k-1}\right), f\left(x_{0}, x_{0}, \ldots, x_{0}\right)\right)=d\left(x_{n+k}, f\left(x_{0}, x_{0}, \ldots, x_{0}\right)\right) \\
\leqslant d\left(f\left(x_{n}, x_{n+1}, \ldots, x_{n+k-1}\right), f\left(x_{0}, x_{0}, \ldots, x_{0}\right)\right)+\sum_{\nu=n}^{\infty} a_{\nu} \rightarrow 0
\end{gathered}
$$

as $n \rightarrow \infty$, what implies that $x_{0}=f\left(x_{0}, x_{0}, \ldots, x_{0}\right)$.
The uniqueness of the solution follows, for example, from the Banach contraction theorem applied to
since

$$
\bar{f}(u)=f(u, u, \ldots, u), \quad(u \in E)
$$

$$
d(\bar{f}(u), \bar{f}(v)) \leqslant q d(u, v) \quad(u, v \in E)
$$

REFERENCE

[1] S. B. Prešić: Sur la convergence des suites, Comptes rendus de l'Académie des sciences de Paris, t. 260, 1965.

[^0]: * Presented by D. S. Mitrinović.

