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Summary. It has been proved that any Q-algebra can be embedded both
in a semigroup [1], [3], and in a so called entropic groupoid [2].

This paper gives a necessary and sufficient condition for embedding any
Q-algebra in some groupoid &=(G, *) satisfying) the set of laws I (). The
condition is:

There is a term & (x, y; ¥) formed of two variables x, y and the operation
symbol * such that the operation o defined by

© Xyo =B (x, y; %)

does not satisfy any algebraic law (except the law x= x), while the operation *
satisfies the laws in T (%).

Some new examples of groupoids which satisfy the condition (2) are
presented:

1° Each Q-algebra can be embedded in a commutative groupoid.

2° Each Q-algebra can be embedded in a groupoid satisfying the law of
the type

Hxl"'xn=nx171"'xpn9

where at both sides of the equality the arrangement of the operation symbols
-n

Pll’z My

is the same, and the pefmutation (
For example, the laws of this type are

) has at least one fixed point.

XY *Zk=ZYP* X%, XP*UXVW*xk=WPkV* UX * *,

In the second part of the paper it is shown that the condition (€) can
be extended so that the main theorems 1, 2 hold for the laws X (€), i.e. for
variety Vg (Z), where () is a set of some operation symbols. For example, any

Q-algebra can be embedded in an entropic algebra, i. ¢. in an algebra satisfying:
(X2 0 v o Xpufo o XXyt X )= (Xyy Xy v X fe 0 Xy X X ) S

1 In other words, ¢ belongs to the variety V, (%), [1].
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1. The main result of the paper is the following

‘ Theorem 1. If Q is an arbitrary Q-algebra and Z () a set of lawsY
satisfying the condition (C), then there exists a groupoid G= (G, %) satisfying
the laws X (x), with the properties:

(i) Q is a subset of G; ,

(i) If o€ Q is some n-ary operation, then there exists an <G and a term
to(x,, ...y X,, ®; o) formed from variables x,, ..., x,, the constant symbol & and

the operation symbol o such that:
o=0, If oEQ(°)

XXy o X, 0=ty (X, ..., X,, @} 0), If 0&Qm, n=12,...
where xyo d-ifi(x, v #) The existence of & (x, y; #) is guaranteed by (€).
For the proof we need the following definitions:
I. Let G be a minimal set satisfying the conditions:
The set XL QUQ is a subset of G,
If u,v&eG, then w &G.

Let §=(G, =) be a groupoid determined by the set G and by the operation
defined in the natural way, i.e. § is the x-word algebra on X.

I1. Let G, be a minimal subset of G such that:

X is a subset of G,

If u,vEG,, then uvo €G,, where o is defined by the term &(x, y; %) (of
condition (©)):

Def (o) ’ xyo gif‘ﬁ(x, y; *)
III. For each o&Q(m) (n=0, 1,...) we define an operation ® on G:)
Def (Q) o=, if =0,
X oo X,@=1,(X;, ..., X,,0;0), if n=1,2,...,

where ¢,(x,,..., x,, w;0) is a term formed from variables x|, ..., x,, the constant
o and the operation symbol o. These terms can be chosen arbitrarily, in parti-
cular, they can be chosen with the operation symbols grouped on the right [2].
The operations defined in that way form the set

def

‘ Q= {0 |wcQ}.
IV. Finally, let G, be a minimal subset of G, such that:
QUQ(0) is a subset of Gq,

If u,...,u,EGq, and 0 &Q@) (n=1,2,..), then wu, ...u,0<Gq.
Hence, the elements of G, are those terms of G which can be represented by
operations from Q.

1) We assume that the laws are consistent, i. e. that they do not imply x =y, where x, y
are different variables. '
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V. Let ~z, ~p, ~o, ~q be the minimal congruences generated by
2(x), TabQ(Q), Def(o), Def(Q),

def .

U~y & Z(x¥)—u=yv,
def

u~gv & TabQ Q) Fu=v, u, vEG)
def

u~ov & Def(o)l-u=v

def
u~qy & Def(Q)l-u=v. -

The symbol |— denotes the logical deduction [4], for example 2 (*)-u=v
means that the formula u=v can be derived from the laws X (x) and the equality
axioms. Tab Q@ (Q) is the so called positive diagram [4] of the algebra Q, i.e.
the set of all equalities of the form

a,---a,0=a (a,...0,ac0,0EQ(Mm), n=1,2,...)

which hold in Q. TabQ(Q) is the corresponding set of formulas obtained by
exchanging each w Q) by 0 &Q.

that is:

VI. The relation ~ is the minimal congruence of the set G generated by

NQ.

~zs NQ’ ~ s

Lemma. Let p be one of the relations ~z, ~g, ~o, ~q and let ¢ be
one of the relations ~ 5, ~,, ~q. Then ’

USGaAupv) = @V EGy)vey.
Proof. We distinguish four cases: u~,y, u~gv, u~ov, trov.

Adl. In this case the term V' is just u, since by condition (€), each term
can be uniquely represented by o (if such a representation exists), and hence
uniquely represented by operations from Q (if the representation exists).

Ad2. Let u=u(- - cecaq,0--0), a,...a,c0Q. If the subterm of
a,---a,0 is replaced by a, under the condltlon that (in Q) a1 -+a,0=a, the
resultmg term is again in Ggq. Slmllarly, in the case u (+--a---), ie aisa
subterm of u, we conclude that u(--.q- )EGQ, ifa . -a,0=a

holds in Q. Since ~, can be defined in a flnlte number of such rep! acements,
we have
uCGahu~gr = v&Go.

In cases 3 and 4, it immediately follows that v’ is uniquely determined
and equal to u. Hence:

(1) In the cases u~_ v, u~,v, u~qy, if uEDg, then the uniquely determined
u' s just u.

Proof of Theorem 1. We first prove:
)] =y => x=y (%yeQ),
where X,y are the equivalence classes of x, y with respect to ~.
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Suppose that X=7, i.e. x~y. Then there exists a natural number k£ and
elements
Upy Upy ooy Uy Uy =X, Up=Y u,EG6)

such that for each i=1,..., k- 1:
Uzl g O Uyl OF Ui~ oliay OF Uy~~qlly 4.
Let Int be an interpretation, i.e. a mapping such that
() If x=Q, then Int(x) = x,
(i) If ©<SQ(0), then Int(0) =L e,
(i) If 0cQm) (n=1,2,...) and ¢,,...1,& Dg, then
Int(t,- - -, 0) = Int(2,)- - -Int(t)
(iv) If t& D and there exists a '€ Dg such that
Z(x), Def(c), Def(Q)t=t'
then Int() % Int(r). ‘

The mapping Int is well defined. The conditions (i), (ii), (iii) represent the
usual definition of homomorphism. The soundness of part (iv) follows from (1).

The mapping Int carries the sequence u,, ..., #, into the sequence
Int (u)), Int(u,),..., Int(y,)

of elements of Q-algebra Q:

From the definition of the mapping Int we have:

If one of the conditions u~,v, U~ gy, U~ v, U~qy is satisfied, then the
equality Int(u)=Int(y) holds in Q.

Hence:

x=Int(u)=Int(u,)= - - =Int(y,)=y

implying that the equality x=y holds in @, which proves (2).

In order to complete the proof of the theorem, we introduce the quotient
groupoid 4 =(G, %), where

G (5| vea), e

The groupoid ¢ satisfies the same laws as g.

Further, let :
—-def

Q={x|xcQ}

For each w&Q (n) we define an operation o in Q in the following way

— def —

o=0, if ocQ(0)

X, -—)Engc—l;xl- < x,0, if ©EQ(R) n=12,...).

.y
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It is clear that Q is an Q-algebra_(a corresponds to ). From the first
part of the proof it follows that Q and Q are isomorphic algebras (an isomor-
phism being f: x-> X). This completes the proof of the theorem.

2. We give some examples of the laws X (x) satisfying the condition (€).

I. Already known examples of the laws X (¥) are associative and entropic
laws ({11, [3], [2]). The simplest terms &(x, y; #) in the first case are

axxyx, Xy*a*
and in the second one

XAk Ay * %, XX®kXY*%, XP*Py**.

II. The commutative law also satisfies the condition (€). One example of
the term & (x, y; *) is: xx* xy % %. This is the well known term which is used
to define the ordered pair.V

IIL. If £ (%) is a law of the form
Hxl' N 'xn=HxP1' * * Xpn

where at both sides of the equality are terms with the same arrangement of
1---n

pl .. -pn
point, for example p(i)=1i, then one convenient term is

operation symbols, and the permutation p=( ) has at least one fixed

Ox.--xyx--x (y is at the i-th place)
In the case of laws:

XY %2 %=2Z)% X%, XY s UkVW ok =WY*V % UX % *
such terms are: xy#x#, xy*x*xx*x respectively, for they stay unchanged after
applying the corresponding laws [2].
IV. An example of laws of the previous type is
Oxg -« ox,=1xp -+ - Xp,

under the condition that the permutation p has at least two fixed points, say
p()=i, p(j)=j. The convenient term &(x, y; *) can be formed as in III, as
well as in different way. Namely

Ila---.axa- - -aya- - -a (a is a constant; x and y are
at the i-th and j-th place)
satisfies also the condition (&).

Remark. If the term & (x, y; %) is such that it depends on the constant q,
i. e. the term of the form £(x, y, a; *), then Def (o) becomes:

Definition (op) xy0, ¥ (x, v, @ %)

and the operation ® can be represented by some term £(x;,...X,; o,) i.e. it
is not necessary to use a new constant, since o, already depends on w. This
situation occurs in the case of associative and entropic laws (f for £ (x, y; %)
the term xa+ay=** is chosen).

def '
D (x, y) = {{X, x}, {X, y}}'__{{x}’ {x’ y}}'
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3. The converse of the Theorem 1. is given by the following

Theorem 2. If 2 (%) are algebraic laws such that for each £-algebra
there exists a groupoid (G, =) satisfying the laws Z (%), and Q is isomorphically
embedded in (G, *), then there exists a term & (x, y; ) such difficult the operation o
defined by Def (o) does not satisfy any algebraic law.

Proof. If each Q-algebra can be embedded in some groupoid satisfying
2 (#), then the same holds for o-word algebra W generated by some set X and
the operation symbol o (of arity two). That is, there exists a groupoid (G, *)
and a term £ (x, y; ) such that

\ xyod_ifi(x, ¥ *).
As W does not satisfy any algebraic law [1], the term £ (x, y; #) is the required term.

4. By analysing the proofs of the previous theorems it is not hard to see
that the assumption that X (*) are the groupoid laws is not essential. Namely,
if Z () are the laws with respect to the operators of some set (J, but such that

There exists a term & (x, y; 0., ..., 0,), 0,0 such that the operation o
(of arity two) defined by '
, def
@ xpo Z=E (X, 3055+ -5 0,)

does not satisfy any algebraic law,

then Theorems 1 and 2 can be extended to the statements about the embeddine
of each Q-algebra in some (J-algebra satisfying X (0), i.e. belonging to thg
variety Vg (Z). For example, one primitive class X (0) satisfying (€') is the
class Z ({f} with the law: ,

(X0 + =Xy o Xy X X ) = (X3 Xy + - - X oo o XXyt o X ) -
The term of n variables satisfying (€') is:

(xlla. . .af. N 1 'xnnf)f

which can easily be reduced to a term of the form & (x, y, @; f).
The other class X () is X ({f, g}) (f of arity one, g of arity two) with

the laws:
xxg=xf,  xyg=yxg

The convenient term &(x, y; f, g) is: xfxygg. If f, g are the set operator {}
then the term becomes {{x}, {x, y}}
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