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1. Let Q be a nonempty set whose membres we shall call operation sym-
bols. We suppose that with each wQ a non-negative integer /(w) (the length
of w) is associated. Let (n) denote the set of all » with /(w)=n. Further,
the members of the set
. V={X,, X35 « vy Xp» -+ }
are called variables.

Denote by Term (Q, V) the set? of all terms built up from the operation
symbols and ‘the variables.

By an algebraic law we understand any formula of. the form
(1) , , t=t,
where ¢, t,ETerm (Q, V).

Denote by L a set of certain algebraic laws (of the form (1)).

Further, let I" be a given set? and let F be the free Q-algebra gene-
rated by I' and satisfying the laws L.

Let Term (Q, I') denote the set® of all terms built up from I' and Q
(i.e. without variables).

1) It is the smallest set which satisfies the following conditions
O QOCTerm(Q, V), VCTerm (Q,V).
(i) If 0cQ @ and 1, ..., 1,cTerm (Q, V), then

Oy, ..., t)ETerm(@Q,V).

For the sets Q, V we suppose that QN V=g and that the symbols), (, - are not members
of QUV.

2 We suppose: TN QQO) =2, TUQO)#2, =&T, » ¢T,)&T, (£71.

Elements of I''UQ (0) are called constants,

3 If in the definition of Term (Q V) (see footnote 1) we put I' instead of ¥, we obtain
the definition of Term (Q, 1),
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The elements of F are represented by equivalence classes of the follo-
wing relation ~ of the set Term (Q, I'):
(2) t,~t, iff: Term t, can be obtained from term ¢, by applying the

laws L.

This definition is of any practical value only if we have an algorithm,
i.e. a rule for deciding in a finite number of steps whether any two terms
t,, t, are equivalent. The problem of finding such an algorithm is called the
word problem (for F).

Such an algorithm is decribed in the book P. M. Cohn, Universal Algebra,
1965. on the pages 155, 156.

We sketch it.

Let M be any subset of Term (Q, I') satisfying the following condition:

(3)  For every tCTerm (Q, I') there is at least one element mc M which is
equivalent to 1.
Further, let 6: Term (Q, I')—>M be a function satisfying the following
conditions :
1° s (w)~o
2° If me M, then o (m)=m.
By means of M and o we define an Q-algebra F’ as follows:

— The elements of F’ are just the elements of M.

— Let c©£Q(0) and m~c, where m& M. With the symbol ¢ a noughtary
operation of M is associated, determined by the chosen element m.

— Let w&Q(n), where n>>1. With the symbol « the following opera-
tion ,, (of the set M) is associated

oy My, ..., m)=c(@m, ..., m)).
According .to the algorithm (see Theorem 9.1):
(4) If the algebra F’ satisfies the laws L then the elements of M are
pairwise nonequivalent, i.e.

m,=m, & m~m, (where m,, m,& M)

However, that is not true as the following example shows.

Example 1. Let )
Q={x}, I(#)=2, T={a}, L={x; xx =x}".
For the elements of M we choose:
@@, a
where a?8L g+ a, %L a2 v a.
It is obvious that every term t<Term (Q,T’) is equivalent to® @* or a’,

4). We have written x, * x, instead of * (x; » x,).
) As a matter of fact every term ¢ is equivalent to the term a.
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Further, let ¢ be the following function

. (a2 @ atxdd dPxrad...t... )
=

a@ & at a ... a...

(t is any term different from @&, @, o x @, a* *x &),
Then the algebra F’ is a groupoid defined by the table:

syl @ &
a|la &
al|la @
The algebra’ F’ satisfies the law x, » x,=x;, but on the other hand the terms a?, &*
are equivalent,

One of our purposes is to correct the described algorithm.

2. Let Q and T' be given sets. So called quasi-algebra is a notion defined
by them. The corresponding definition is a bit technically complex, therefore
we begin with some examples of quasi-algebras.

Example 2. Let Q={«}, I(+)=2, I'={a, b}. Let us denote by M the set of the
following terms

Further, let Q be the set of formulas: ‘
axa=>b asb=a ax(@xby=axb
0] bva=axb  bub=a bs@+b)=a
(axb)ysa=a (@xb)ib=axb (@xb)«(axb)y=>b.

Each of these formulas is of the form

tet,=1, (where #,, t,, 1,EM).

The set Q is an example of a quasi-algebra, i.e. of a quasi-groupoid (of the set
{a, b, a = b}). :

More- generally, if M is any subset of the set Term (2, I') containing the elements
a and b, then each set M of formulas of the form .

toxt,=t, (where t,,¢,,5,&M; ¢,1, run over M and for
each pair (f;, ¢,) there exists exactly one #;)
is an example of a quasi-algebra,.

In order to work more easily we shall represent the quasi-algebra (5) by the following
“table” ‘

* | a b axb
i
) a b a axb
b ga*b a a
a#b? a asb b

17% Publications de I’Institut Mathématique
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Similarly the table

| a b (axa)+b bxa
) ag b a bxa b
bibsa (@xa)=b b . bxa

(a*a)*bg

a - b (@xa)+b a
fepresents a quasi-algebra, with

M ={a, 'b; @xaysb, bxa}.

We now return to the general case in orcer to define the notion of a
quasi-algebra.

Let Q, " be given sets and let M ‘be any subset of Term (Q, I') sa-
tisfying the following condition.

(1) W t&M and if ccQ@O)UT is any subterm of ¢, then c& M.
~ Any quasi-algebra Q (related to the asts Q, I, M) is determined with

® 0= U Q,
weEQ

where Q,, are certain sets of formulas, i.e. equalities.
If l(w)=nz>1, then Q, consists of certain equalities of the form
©) o, ..., t)=t (t;,..., 1, tEM)
under the condition: X
The terms ¢, ..., t, run over M, but two equalities of the form
O, s )=t (..., )=t (t#t")
cannot belong to Q.
If /(»)=0, then Q, consists of one equality of the form
(10) o=t '
where +& M.

" Example 3. LetQ={xe, (8} 1(=21()=1()=1(g)=0,T={a}, M={q, ¢, ase}.
The condition (7) is satisfied. Let Q, be the set of equalities represented by the “table”

* la e axe .
1 L
a | xe a
an pe e :
e ia a ’  axe
axele axe e

Further, let Q,, Oy, Q, be the singletones with the members:
12 : e=e, f=axe, g=e

respectively.
The set Q.UQUQrUQ, is an example of a quasi-algebra (related to the sets Q, T', M),
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3. We are going to study some general properties of- quasi-algebras.
At first we recall what means that an equality #,=1#, is a consequence of
given equalities.

Let E be a set of certain equalities contammg some constants and oﬁe
ration symbols, but no-variables.

We say that a given equahty t,=t, is a consequence of E in symbols
Ert,=1t, if and only 1f there is a finite sequence of equalities

13) G My *‘Vu Upg==Vas o ooy Up=TVy : S CE

such that u, is ?,; », is  #, and for every i(1<<i<n) the equahty u; =V, satisfies:
1° w=v; is a member of E; or
2° =, is of the.form u=u, i.e.
u; and v; are the same term, or

3° w;=v; can be obtained from certain of the equahtxes Uy = vy,

Uy=Vy, ..., U_=V;_, by applying one of the following rules
p=q . p=q, 4q=r Py=qs5 o5 Pr=4k
qg=p p=r Cﬁ(l’ia---apk):w(%a-»- 9

where How)=k, and o is an operation symbol occuring in some
equality of E. o

Now let Q, I, L be given. Further, let
(14) -  LiremeD

be the set of all those equalities which can be -obtained from the members
of L i.e. from the equalities (1), by all posible replacements of the form

Xy=>ls Xp>lyy eovy Xp=>lys oo

where 4, 8y, ... 5 £y ... TUD OVET the set Term (Q, I').

Let Q be a quasi-algebra related to the sets Q,I', M. We say that Q
satisfies the laws L if and only if each member #, =1, of the set (14) is a
consequence of Q.

Example 4. Let Q {+}, 1(x)=2, I'={a}, M={g,axa} and O a guaspalgebra
defined by the table

5 | a ‘k (@axa)x{a+a)
{15) o  a @ray+@say  (axa) s@*a)
(a*a)*(a»«a)? a a

Let the terms
(xa * X;) % X3, X ¥ (xz * X3)

be denoted by L (x;, x,, x3), R (x” X,,%9) respcctlve]y
From the given gquasi-algebra Q it follows the equalijy -

(16) L(a,a,a)=a.

17
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One proof is:

an asa={(axa)yx(axa) - (This equality is 2 member of Q) -
@) . a=a o . . ; '
@ k (a ra)ra=((@xa)x@*a)*a  (From 19, 2 by the rule

Di=q1, Pr=q,
PyxPy=a,%q,

(G2 ({(as@r(@xa) ra=a e (This equality is a member of Q)
5% . J(asaysa=a S (From (3%, 4) by the rule
p=a, g=r
oy
Cie, L{g, a, a)=a, :

Instead of such a detailed proof ‘we can use the following:
Lig,a,a)=(@xa)xa (Definition)
=({axa)x(axa)xa - (For axa=as*(d=*a)

=a

- Obvidusly, this proof corresponds to the usual ‘procedure for finding the value of a -
given term,

Similarly, for the term a* (a * a)), say, we have

ax(@x(@xa))=a+(axb) (From (15); b is an abbrevation for

(@xa)+(a*a)
=axbh © (Foraxb=b)

=b (For axb=5)"

Thus the equality :
ax(@x@sad)=@*a)+@+a)

follows from the quasi-algebra Q.
Generally, if #(g, %) is any term, then at least one of the equahtxes

t{a, )=a, t{a, »=(@=a)*{a=*a0)

follows from Q. ) ‘

' We now return again to’ the terms L(xi, xz, x5), R (X1, Xy, X3).
We claim that the equality

L (xl, Xpy XY= R (%1, xz, %)
i.e, the associative law is saﬁsfied in the quasi-algebra @.
First, let x,, x,, x; have the values a, a, a respectively, Then we have
Lag,a a=a (Equality (16))
"Ra,a,a)=ax(asa)=asb=h k |

i.e, R{a,a,a)=(ax*a)+(axaq).
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Does it mean that the quasi-algebra Q does not satisfy the associative law?
However, from the quasi-algebra Q@ we also have the following argument
R(a,a,0)=(axa)x(axa)

=bxb - (For a=a=>b, where b is an abbreviation for
(axa)«(ax*a))
=q (From (15)

Thus, the equality
a=b, ie. a=(@=xa)*(ax*a)

follows from the quasi-algebra Q. From this, we conclude that the set Q is equivalent® to
the following quas1 -algebra Q" ;

Q=(s}, T={a), M'={a).

Therefore the quasi-algebra Q obviously satisfies the associative law.

Let us return to the general study. :
Let Q be a given quasi-algebra related to the set Q, I',- M, where, say

In general, members of M will be called markers.

Denote by Term (Q) the set of all terms built up from operation symbols
of Q and thoze members of I' ‘which occur in some marker.

Suppose that for a term ¢ Term (Q) and mEM

Ql—t=m.
Then we say that m is a marker-value for the term ¢.
Using (7), (9) and (10) it is easy to prove? that
(17) Each term t & Term (Q) has at least one marker-value.
For some quasi-algebra Q it can happen that
(18) Each term t & Term (Q) has exactly one marker-value.
- We say that a quasi-lgebra Q' is contractible iff
(19) There are two different® markers m;, m; such that Q\-m;=m;.
1t is easy to see that "

9 We say that two sets E,, E2 of equalities are équivalent iff each member of one of
these sets is a consequance of the other set and vice versa.

7) By induction on the number of all operation symbols o (/ (®w)>1) occuring in the
term £, say.

8 Different as words, i.e, as terms.
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(20) Each term ¢ Term (Q) has exactly one marker-value iff the quasi-algebra Q
is not contractible.

For instance the quasi-algebra (15) is contractible (because the equality
a=(axa)*(ax*a) follows from Q).

Now we give examples of ‘incontractible quasi-algebras.

Example 5. Let Q={x ¢, f, g}, {(x)=2, I(&=I(f)= l(g) 0, I'= {a b}, M-
={a, b, e, f} and Q defined by the table

(21)

and the equalities
(22 - e=e, f=f, &=/
In that case:
{i) Markers are some constants, i.e. some members of the set Q (O)UT,
(ii) The equalities of the type (10) have the form o =w whenever © is a marker,

Just because of these reasons the equalities (21){J(22) represent one part of a defini-
tion of an Q-algebra Q’. Besides these equalities the definition of ‘Q’ still contains only the
following formulas

23) a#b, ae, a#f
bste, b#Sf
e+f.

The Q-algebra @', defined by (21), (22), (23), is an Q-algebra on the set {a, b, ¢, f}.

Generally we suppose that
(24) Any Q-algebra is incontractible

Specially, from this it follows that the algebra Q' is incontractible,
whence we conclude that the quasi-algebra Q is incontractible too.

The quasi-algebra Q is an example of so called letter quasi-algebras.
These quasi-algebras are characterized by the preceding conditions (i), '(il;)’.
According to the general suposition (24) we have: !

,\(25_‘) Any latter quasi-algebra Q is incontractible.

We shall now describe a procedure for deciding whether a given qua51-
"—algebra is contractible.

First we give an example.
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Example 6. Let Q={x, ¢, f}, I(x)=2, I(=I(f)=0, TI'={a, b}, M= {a,b e,
(@axe)xb, (bxe)*(exe)} and O representad by (26) and (27), where : o

*la b e (@xe)+b (b*e)*(ei:e)"
aimy, m, Bre)r(exe) o my, (bre)x(exe)
(26) b my my, a My Mys
/ e | my my,, ((hxe)s(exe) my my,
axe)xb | my m,, my; . my, My
(bre)s(exe) imy, (axe)=bh Mgy ‘mg, ;s
(e4)] e=e, f=(axe)xb,

For the my it is supposed that they may be any elements of M.

The markers (a #e) * b, (b =€) « (e x€) are called composite, because they contain the
sign =, Generally, we say that a marker m (of a certain qua51-a1gebra) is composite iff m
contains at least one o< Q, where [ (w)>1,

In the first step with each composite marker we associate one new symbol-its new
denotation, Let 4, 5, say, be new denotations for the markers

‘ (@axe)xb. (bxe)x(exe
respectively.
According to this we form the following equalities

(28) d=(axe)xb, S5=(b=xe)x(exe).

This is the second step of our procedure.

In the third step, in the equalities of a given quasi-algebra O we replace all compo-
site markers by their new denotations. So- we obtain the equalities (267), (27°), where®:

* | a b e 4 5
B 4 ! !’
a | mg, my, 5 m, 5
7 ’ ’ !
(26" b | my my, a My mys
7 ’ ’ ’
e | my ms, 5 my, mys
’? ’ ! ’ ’
4 1 my m,, My, My, mys
r r ’ ’
51 mg 4 msy Msy s
,
27) e=e, f=4.

Any use of new denotations cannoi be creative. From thlS, investigation whether the
given quasi-algebra (25) U (27) is conctractible may be replaced by investigation whether the
set (26") U (27) LU 28) is contractible (i.e whether from the equalities (26" U (27) U (28) any

of the following equalities
‘a=b, a=e, a=’4, a=5

b=e, b=4, b=5
e=4, e=5
4=5
follows).

9 We suppose that m;] is obtained from my;,
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The. fourth step is investigation of contractibility of the set (26") U 27") U (28).
Let us denote the set (26 (27) by Q’. This set may be consuiered as a letter
quasmlgebra with:

Q={x,e f), I(x=2, }(e):l(f)r—-:
" T={a,b,4,5), M={ab,e 4S5}
From this and (25) we conclude that @’ is incontractible, )

Now we cheek if the equalities (28) follow from @',
For that purpose from Q’ we “calculate” the composite markers (ex e} #b, (bxe)x(exe).

So we have:
(@xe)xb=5+b (For a+e=5)
} =4 (For 54b=4)
breyx(exe)=ax5 : (For bxe=a, exe=3).
=5

The previons calculations constitute the ﬁfth step, which is also the last one,
Thus the equalities (28) follow from Q’,

From this we conclude that the set (260U Q7)Y U (28) is eqmvalent to the set ¢,
which is incontractible,

Finally, we conclude that the quasi-algebra O is inconiractible.

Note, that the result of investigation essentially depends on the calcuié.tions done in
the fifth step, Namely:

(29) - The quasi-algebra Q is incontractible if and only if the values-of composite markers,
- caleulated from the quasi-algebra (', are equal to their new denotation,

For instance, suppose that we have obtained the equality
(@axe) *b—a.

Then from this equality and the equality 4=(a*¢)%b it should follow a=4, i.e. the
set (26’) U (27) U (28) should be contractible,

In general case we proceede quite similarly as in the given exémpie.

The main steps are:

~ -introduction new denotations for composite terms

— calculation of values of all composite term (related to the new quasi-
-algebra Q).

In general case we use the equivalence (29), by means of wizzck we finally
decide about contractibility of the given quasi-algebra Q.

We have seen that for any letter quasi-algebra Q (with M={m;|icI})
there is exactly one Q-algebra Q' with elements a; satisfying the equalities
defining the quasi-algebra Q. The Q-algebra Q' is determined by the equali-
ties which define Q plus the inequalities of the following type

a7a; (where i+j).
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The similar holds for any incontractible quasi- algebra Q too. Namely
if @ is any incontractibile quasi-algebra related to the given sets Q, I', M=
- =m;|iE€1} defined by the equalities (9) and (10), then there exists exactly
one Qalgebra Q' with elements m;cM and satisfying (9) and (10). This
algebra Q' is determined by (9), (10) and the inequalities of the following type

(30) m;7m; (Where is£j

This follows from the fact that the set (9)U(10)\U(30) is consistent
(since Q is incontractible). For instance, if Q is the quasi-algebra considered
in Example 6, then corresponding Q-algebra Q' has as elements the terms!® :

a,b,e, (axe)xb, (bxe)x(exe)

the operation = is defined by (26) and the noughtary operations e, f are
defined by (27).

4. Now we return to the word problem posed at the beginning. If the
sets Q (the set of some operation symbols), L (the set of some algebraic laws)
and I’ are given then, as we have already seen, the main problem is to
describe all members of the corre:ponding free algebra F. These members are
equivalence classes of the relation ~ defined by (2). More precisely this defi-
nition reads:

€3] ti~t, iff Lirem@nlti=t

where ¢, ¢, run over the set Term (Q, I').

As at the beginning we suppose that there exists a subset M of the set
Term (Q, I') satisfying (3). .

In addition, for the set M we suppose!? (7).
Let 0cQ (with [(@)=n>1) and m,, ..., m,CH.

From (3) it follows that the term o (m,, ..., m,) is equivalent to at
least one element m M i.e. to at least one marker (as before for the ele-
ments of M we shall use the name marker). According to this let us form
the equality

(32) o(m, ..., m)=m

where m is a chosen marker equivalent to o (m,, ..., m,). Of course this
choise need not be unique.

Further, let @« =Q(0) and let mC M be a chosen marker equivalent to w.
Let us form the equality:

(33) w=m.

1) As elements we can also use
a, b, e. 4, 5,

11) As a matter of fact from (3) it can be easily proved that there exists a new set M,
satisfuing both (3) and (7).
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We denote by Q the set of all such formed equalities (32) and (33).
The set Q0 may be “considered a quasi-algebra related to the set Q, ', M.
For Q we shall also say that it is

a marker quasi-algebra related to Q, T, L.
Our main result is the following theorem.

Theorem. The markers are pairwise nonequivalent if and only if the
marker quasi-algebra Q

1° is incontractible, and
2° satisfies the laws L.

Proof. From the definition of Q it follows:

(34} ’ L ‘ Term (Q,T) = Q

Using (34) we conclude that the cet L1 Term(Q,T) 1S equivalent to the
set L| zerm @, UQ. From this we conclude that the relation defined by (31),
can be defined by:

(35) . m;~m, lff L] Term(Ql")UQ}“‘m1

We first suppose that the conditions 1° and 2° hold. As Q satisfies the
laws L the set L|7em@nUQ is equivalent to the set Q. From this we
conclude that definition (35) may be replaced by:

my~m, iff Qbm;=m,.
At last, from the condition 1° it follows:
my~m, iff m;, m, are the same term.

Now we suppose that at least one of the conditions 1°, 2° does not hold.

Case: 1° does not hold. Then for some two different markers ¢, ¢,
we have ;

M-t =1,.
From this and (35) follows that ¢ ~1,.
Case: 2° does not hold. Then for some different markers m,, m, we have
(36) k L\ 7em@,n\UQFm =m

because for at least one law u=v (a member of L) the coresponding marker
Q-values'® of the left and right side will be different, m,, m, say.

From (35) and (36) it follows that m,~m,. Thus in both casses 1°, 2°
there are two different markers m,, m, which are equivalent. The proof is
completed.

- 12) j e, related to the marker quasi-algebra Q.
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- Remark. The condition (3), (5), 1° and 2° are natural becausé they
correspond to the following properties of the free algebra F:

_F is an Q-algebra, generated by Q(0)UT and satisfying the laws L.

At the end we give two examples. ‘

Example 7. Let Q={s}, I(+¥)=2,let I" be any non empty set and let the associa-
ative law

©

(37 (g % X5) # Xy =Xy % (X, % X3)
be the only member of L. For markers we can take all terms of the form:
P15 D1 %Py (P1*D)*Ds, ...

n
" i.e. of the form [ [ p;, where n=1,2, ... and p;cT.
i=1

A coressponding marker quasi-algebra Q can be defined by the equalities of the form

n n+m n+m
(38) 112:i¢ 11 2= 1] 2s-
i=1 i=n+1 i=1

It is easy to see that Q is incontractible and satisfies 37.

For instance, let us compute (p; *p,)*p, using (38). So we have:
.value of (p,*p,)*p; ’

= value of ((value of p, = p,) % p;)

= value of (A *p;) A is an abbrevation for p, = p,
=Axp,

= (p1*P) * ;.

Generally, it is true:

n n
value of H p;, related to Q, equals H i

i=1 i=1
i.e. Q is incontractible!?,
Example 8. Let us construct the group G with the presentation
‘G=Gp{a,b|a*=b*=e, a-b=b-a},
This problem may be considered as the problem of finding the free algebra F with:
Q:{-’e’ _1}' (l(')=2, l(€)=0, I(—'l):l)
T'={a, b}, L is the set of the following equalities:
(39) X1 (XpeXy) = (X, X)) X5, xl-xflée, X=X,
(40) " a-a=e, b-b=e, a-b=b-a.
It is easy to se that as markers we can use:
41 a, a, b, a-b.

13)' As we can see introduction of new denotations for composite terms is not necessary.
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Further, a corresponding quasi-algebra @ is determined by the following equalities

x 1 e a b ab 4

€ e a b a-b e"i=g, a l=g b l=b, ‘(a»b)“‘-—-a:lﬁ»
“42) a il a e ab b e=e ‘

b | b ab e a

ab|ab b a e

The only composite marker is a-b, For it we have .
value of a-b=a-b  (because in (42) we have the equality a»béa:b).

It can be also proved that (42) satisfies the laws (39) and (40).
Thus the terms (41), represent all members of the asked group,
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