GENERALIZING LOGIC PROGRAMMING TO ARBITRARY SETS OF CLAUSES

Slaviša B. PREŠIĆ
Faculty of Mathematics, University of Belgrade,
Studentski trg 16, 11000 Belgrade, Yugoslavia

Abstract. In this paper, which is a brief version of [3], we state how one can extend Logic Programming to any set of clauses.

Keywords: Logic Programming, deduction, completeness

The basic part of Logic Programming, particularly Prolog, in fact deals with the following two inference rules:

- $(1) \mathcal{F}, p \vdash p$
- (2) $\mathcal{F}, p \vee \neg q_1 \vee ... \vee \neg q_k \vdash p \longleftarrow \mathcal{F} \vdash q_1, ..., q_k$

(where \mathcal{F} is a set of (positive) Horn formulas and p is any atom, i.e. a propositional letter)

Indeed, the informal meaning of rule (1) is:

An atom p is a consequence of a set of clauses if p is an element of that set.

Similarly for rule (2) we have this meaning:

An atom p is a consequence of a set $\mathcal{F}, p \vee \neg q_1 \vee ... \vee \neg q_k$ (i.e of the set $\mathcal{F}, q_1 \wedge ... \wedge q_k \Rightarrow p$), if $q_1, ..., q_k$ are consequences of the set \mathcal{F} .

In the sequel we use the following facts from mathematical logic (see [2]):

(3) The notion of formal proof in the case of propositional logic (assuming we have chosen some tautologies as axioms, and that modus ponens is the only inference rule).

- (4) The Deduction theorem¹: $\mathcal{F}, A \vdash B \longleftrightarrow \mathcal{F} \vdash A \Rightarrow B$ where \mathcal{F} is a set of propositional formulas and A, B are some such formulas.
- (5) Completeness Theorem: Any propositional formula is a togical theorem if and only if it is a tautology.

We also use the symbols \perp , \top which can be introduced by the following definitions

 \perp stands for $a \land \neg a$; \top stands for $a \lor \neg a$

where a is an atom (chosen arbitrarily). Further, let \mathcal{F} be any set of propositional formulas and ψ a formula or one of the symbols \bot, \top . Then a sequent is any expession of the form $\mathcal{F} \vdash \psi$, with the meaning:

 ψ is a logical consequence of ${\cal F}$

Lemma 1. Let \mathcal{F} be any set of propositional formulas not containing the atom p, and let $\phi_1(p), \phi_2(p), ...$ be propositional formulas containing p. Then we have the following equivalences

(6) (i)
$$\mathcal{F}, \phi_1(p), \phi_2(p), \ldots \vdash p \longleftrightarrow \mathcal{F}, \phi_1(\perp), \phi_2(\perp), \ldots \vdash \perp$$

(ii)
$$\mathcal{F}, \phi_1(p), \phi_2(p), \dots \vdash \neg p \longleftarrow \mathcal{F}, \phi_1(\top), \phi_2(\top), \dots \vdash \bot$$

Proof. First we give proof of the — part of (i). Then, we have the following 'implication-chain':

$$\mathcal{F}, \phi_1(p), \phi_2(p), ... \vdash p$$

- For some formulas $f_1, ..., f_r$ of \mathcal{F} and some formulas $\phi_{i1}(p), ..., \phi_{is}(p)$ we have: $f_1, ..., f_r, \phi_{i1}(p), ..., \phi_{is}(p), ... \vdash p$ (Finiteness of the propositional proof)
- $\longrightarrow \vdash f_1 \Rightarrow \dots \Rightarrow f_r \Rightarrow \phi_{i1}(p) \Rightarrow \dots \Rightarrow \phi_{is}(p) \Rightarrow p$ (By (4))
- Formula $f_1 \Rightarrow ... \Rightarrow f_r \Rightarrow \phi_{i1}(p) \Rightarrow ... \Rightarrow \phi_{is}(p) \Rightarrow p$ is a tautology (By (5))
- \longrightarrow Formula $f_1 \Rightarrow ... \Rightarrow f_r \Rightarrow \phi_{i1}(\bot) \Rightarrow ... \Rightarrow \phi_{is}(\bot) \Rightarrow \bot$ is a tautology

¹In fact, only the —→-part is the deduction theorem. But, the ←—-part is almost trivial.

→ Formula

$$f_1 \Rightarrow ... \Rightarrow f_r \Rightarrow \phi_{i1}(\bot) \Rightarrow ... \Rightarrow \phi_{is}(\bot) \Rightarrow \bot$$
 is a logical theorem (By (5))

--- Formula

$$f_1,...,f_r,\phi_{i1}(\bot),...,\phi_{is}(\bot)\vdash\bot$$
 holds. (By (4))

$$\longrightarrow \mathcal{F}, \phi_1(\bot), \phi_2(\bot), ... \vdash \bot$$

which completes the proof. Proof of the \leftarrow part of (i) reads: $\mathcal{F}, \phi_1(\bot), \phi_2(\bot), ... \vdash \bot$

- For some formulas $f_1, ..., f_r$ of \mathcal{F} and some formulas $\phi_{i1}(\bot), ..., \phi_{is}(\bot)$ we have: $f_1, ..., f_r, \phi_{i1}(\bot), ..., \phi_{is}(\bot), ... \vdash \bot$ (Finiteness of every formal proof)
- $\longrightarrow \vdash f_1 \Rightarrow \dots \Rightarrow f_r \Rightarrow \phi_{i1}(\bot) \Rightarrow \dots \Rightarrow \phi_{is}(\bot) \Rightarrow \bot$ (By (4))
- Formula $f_1 \Rightarrow ... \Rightarrow f_r \Rightarrow \phi_{i1}(\bot) \Rightarrow ... \Rightarrow \phi_{is}(\bot) \Rightarrow \bot$ is a tautology (By (5))
- \longrightarrow Formula $f_1 \Rightarrow ... \Rightarrow f_r \Rightarrow \phi_{i1}(p) \Rightarrow ... \Rightarrow \phi_{is}(p) \Rightarrow p$ is a tautology
- \longrightarrow Formula $f_1 \Rightarrow ... \Rightarrow f_r \Rightarrow \phi_{i1}(p) \Rightarrow ... \Rightarrow \phi_{is}(p) \Rightarrow p$ is a logical theorem (By (5))

→ Formula

$$f_1,...,f_r,\phi_{i1}(p),...,\phi_{is}(p)\vdash p$$

holds.

(By(4))

$$\longrightarrow \mathcal{F}, \phi_1(p), \phi_2(p), ... \vdash p$$

which completes the proof of (i).

We have omitted a proof of (ii) because (ii) can be proved in a similar way as (i).

Notice that Lemma 1 can be expressed by the following words:

A literal² ψ is a logical consequence of the given set if and only if the corresponding³ set is inconsistent.

Now we prove the following lemma.

Lemma 2. The equivalence

(7)
$$\mathcal{F}, p_1 \vee ... \vee p_k \vdash \bot \longrightarrow \mathcal{F} \vdash \neg p_1, ..., \mathcal{F} \vdash \neg p_k$$

(where p_i is any literal)

is true.

Proof. We have the following 'equivalence-chain':

$$\mathcal{F}, p_1 \lor ... \lor p_k \vdash \bot$$

$$\longleftrightarrow \mathcal{F} \vdash (p_1 \lor ... \lor p_k \Longrightarrow \bot)$$

$$(\text{By } (4))$$

$$\longleftrightarrow \mathcal{F} \vdash (\neg p_1 \land ... \land \neg p_k)$$
(Using a well-known tautology)

$$\longleftrightarrow \mathcal{F} \vdash \neg p_1, ..., \mathcal{F} \vdash \neg p_k$$

which completes the proof.

Besides (6) and (7) we emphasize the following obvious equivalences

$$(8) \qquad \vdash \top \longleftrightarrow \mathcal{F}, \bot \vdash \bot$$

$$(9) \mathcal{F}, \top \vdash A \longleftrightarrow \mathcal{F} \vdash A$$

(A is a literal or the symbol \perp)

²A literal is an atom or the negation of an atom

³i.e. one of the sets $\mathcal{F}, \phi_1(\perp), \phi_2(\perp), \dots$ or $\mathcal{F}, \phi_1(\top), \phi_2(\top), \dots$

Suppose now that \mathcal{F} is a given set of clauses and ψ is a literal or \bot . Is it possible that using the equivalences (6), (7), (8), (9) one can establish whether or not ψ is a logical consequence of \mathcal{F} ? In order to answer this we introduce the following inference rules⁴

(R1)
$$\mathcal{F}, \bot \vdash \bot \longleftarrow \vdash \top$$

(R2)
$$\mathcal{F}, \phi_1(p), \phi_2(p), ... \vdash p \longleftarrow \mathcal{F}, \phi_1(\bot), \phi_2(\bot), ... \vdash \bot$$

 $\mathcal{F}, \phi_1(p), \phi_2(p), ... \vdash \neg p \longleftarrow \mathcal{F}, \phi_1(\top), \phi_2(\top), ... \vdash \bot$
 $(\phi_i(p) \text{ is any clause containing } p)$

(R3)
$$\mathcal{F}, p_1 \vee ... \vee p_k \vdash \bot \longleftarrow \mathcal{F} \vdash \neg p_1, ..., \mathcal{F} \vdash \neg p_k$$

(where p_i is any literal)

(R4)
$$\mathcal{F}, \top \vdash A \longleftarrow \mathcal{F} \vdash A$$

(A is a literal or the symbol \bot)

We emphasize that in the sequel for the set \mathcal{F} we suppose that it does not contain a clause of the form ... $q \vee \neg q$...,where q is any atom. Namely, such a formula is equivalent to \top , consequently it should be omitted⁵. Similarly, if it happens that by applying rule (R2) some clause becomes equivalent to \top then we will also omit it.

Roughly speaking rules (R1),(R2),(R3),(R4) are used as follows:

We start with a question (a sequent) of the form $\mathcal{F} \vdash \psi$ and apply rules (R2), (R3), (R4) several times. If at some step we can apply rule (R1), the procedure stops with the conclusion that ψ is a logical consequence of \mathcal{F} . However, if at some step we obtain the sequent $\vdash \bot$ (then \mathcal{F} is an empty set) the procedure stops with the conclusion that ψ is not a logical consequence of \mathcal{F} .

Example 1. Answer the following questions:

- 1) $p \vdash p$? 2) $p, q \vdash p$? 3) $\vdash p$? 4) $q \vdash p$?
- 5) $\neg q \lor p, q \lor p \vdash p$? 6) $p, \neg p \lor q \lor \neg r, p \lor \neg q \lor s, p \lor s \lor \neg t \vdash \bot$? where p, q, r, s, t are atoms.

Answer.

1) Applying (R2) we obtain the sequent $\bot \vdash \bot$ and by (R1) we get the sequent $\vdash \top$ so the answer is: Yes.

 $^{^4}$ We point out that the set $\mathcal F$ may be also an empty set.

⁵This is compatible with rule (R4)

- 2) Applying (R2) we obtain a new question, i.e the sequent \perp , $q \vdash \perp$, and now applying (R1) we obtain the sequent $\vdash \top$ so the answer is: Yes.
- 3) Applying (R2) we obtain the sequent $\vdash \bot$ so the asswer is: No.
- 4) By (R2) we obtain the sequent $q \vdash \bot$ and after that by (R3) we obtain the sequent $\vdash \neg q$. Finally, by (R2) we obtain the sequent $\vdash \bot$ such that the answer is : No.
- 5) By (R2) we obtain the sequent $\neg q, q \vdash \bot$. Now by (R3) applied to the literal $\neg q$ we obtain the sequent $q \vdash q$, further by (R2) we obtain the sequent $\bot \vdash \bot$ and finally by (R1) we obtain the sequent $\vdash \top$ so the answer is : Yes.
- 6) Now by (R3) applied to clause p we obtain the sequent

$$\neg p \lor q \lor \neg r, p \lor \neg q \lor s, p \lor s \lor \neg t \vdash \neg p$$

By (R2) (and (R4) applied twice) we obtain the sequent $q \vee \neg r \vdash \bot$

At this step applying (R3) we obtain two new sequents, i.e. questions $\vdash \neg q$? and $\vdash r$?

The answer to the first question is No, so the final answer is also: No.

Concerning rules (R1)-(R4) we have this lemma.

Lemma 3. (Soundness of rules (R1)-(R4)). Let \mathcal{F} be any set of clauses. Suppose that we start with a sequent $\mathcal{F} \vdash \psi$, where ψ is a literal or the symbol \bot . If using rules (R1)-(R4) we obtain the sequent $\vdash \top$ or the sequent $\vdash \bot$, then ψ is / is not a logical consequence of set \mathcal{F} , respectively.

Proof follows immediately from the fact that rules (R1)-(R4) are based on logical equivalences (6)-(9).

Let now $\mathcal{F} \vdash \psi$ be any sequent. By $Val(\mathcal{F} \vdash \psi)$ we denote its *truth value*, defined by:

If ψ is a logical consequence of set \mathcal{F} then $Val(\mathcal{F} \vdash \psi)$ is true otherwise $Val(\mathcal{F} \vdash \psi)$ is false.

According to this definition and to rules (R1)-(R4), i.e. to equivalences (6)-(9) we have the following equalities

(10)
$$Val(\vdash \top) = true$$

 $Val(\vdash \bot) = false$
 $Val(\mathcal{F}, \bot \vdash \bot) = true$
 $Val(\mathcal{F}, \top \vdash \psi) = Val(\mathcal{F} \vdash \psi)$
 $Val(\mathcal{F}, \phi_1(p), \phi_2(p), ... \vdash p) = Val(\mathcal{F}, \phi_1(\bot), \phi_2(\bot), ... \vdash \bot)$

$$Val(\mathcal{F}, \phi_1(p), \phi_2(p), ... \vdash \neg p) = Val(\mathcal{F}, \phi_1(\top), \phi_2(\top), ... \vdash \bot)$$
 $(\phi_i(p) \text{ is any clause containing } p)$
 $Val(\mathcal{F}, p_1 \lor ... \lor p_k \vdash \bot)$
 $= Val(\mathcal{F} \vdash \neg p_1) \text{ and } ... \text{ and } Val(\mathcal{F} \vdash \neg p_k)$

(where p_i is any literal, i.e. an atom or the negation of an atom)

Suppose that \mathcal{F} is a finite set. Then, in fact, these equalities define the function Val recursively on the number of all member of set \mathcal{F} . Consequently, these equalities suggest how to calculate $Val(\mathcal{F} \vdash \psi)$. In other words we have the following assertion:

(11) If \mathcal{F} is a finite set then one can effectively calculate $Val(\vdash \psi)$, i.e. establish whether or not ψ is a logical consequence of set \mathcal{F} .

Next we will prove the following basic theorem.

Theorem 1. (Completeness) Let \mathcal{F} be a set of some clauses and ψ a literal or the symbol \perp . Then:

 ψ is a logical consequence of set \mathcal{F} if and only if starting with $\mathcal{F} \vdash \psi$ and applying rules (R1)-(R4) a finite number of times one can obtain the sequent $\vdash \top$.

Proof. The if - part follows immediately from Lemma 3. To prove the only if - part suppose now that ψ is a logical consequence of set \mathcal{F} . Then ψ is a logical consequence of some f in it e subset \mathcal{A} of set \mathcal{F} (for: every formal proof is finite). Next, by (11) we conclude that starting with the sequent $\mathcal{A} \vdash \psi$ and applying rules (R1)-(R4) a finite number of times one can obtain the sequent $\vdash \top$. Consequently, also starting with the sequent $\mathcal{F} \vdash \psi$ and applying rules (R1)-(R4) a finite number of times one can obtain the sequent $\vdash \top$. The proof is complete.

REFERENCES

- [1] Lloyd J.W., Foundations of Logic Programming, Springer-Verlag, 1984
- [2] Mendelson E., Introduction to Mathematical Logic, Van Nostrand, Princeton, 1979.
- [3] Prešić S. B., How to generalize Logic Programming to arbitrary set of clauses (forthcoming).