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Abstract. In this paper, which is a brief version of [3], we state how one
can extend Logic Programming to any set of clauses.
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The basic part of Logic Programming, particularly Prolog, in fact deals with
the following two inference rules:

(1) F,ptp
(2) F,pV-q1V..Vagtpe— FFq,...,q

(where F is a set of (positive) Horn formulas and p is any atom,
i.e. a propositional letter)

Indeed, the informal meaning of rule (1) is:
An atom p is a consequence of a set of clauses if p is an element
of that set.

Similarly for rule (2) we have this meaning:

An atom p is a consequence of a set F,pV —q1 V ...V =qx (i.e of the set
F,q1 A oA gk = p), ifq1,...,qx are consequences of the set F.

In the sequel we use the following facts from mathematical logic (see [2]):

(3) The notion of formal proof in the case of propositional logic (assuming
we have chosen some tautologies as arioms, and that modus ponens
 is the only inference rule).



76

(4) The Deduction theorem! : F, A+ B «—— F F A =.B where F is
a set of propositional formulas and A, B are some such formulas.

(5) Completeness Theorem: Any propositional formula is a logical the-
orem if and only if it is a tautology.

We also use the symbols L, T which can be introduced by the following
definitions

1 stands for a A —a; T stands for a V —a
where « is an atom (chosen arbitrarily). Further, let F be any set of propo-
sitional formulas and ¥ a formula or one of the symbols L, T. Then a
sequent is any expession of the form F F 2, with the meaning: |
¥ is a logical consequence of F
Lemma 1. Let F be any set of propositional formulas not containing the
atom p, and let ¢1(p), p2(p), ... be propositional formulas containing p. Then
we have the following equivalences

(6) (z)  F.ou(p),da(p), .- p = F.1(L), @ L), .. F L

(i) F,oup), 2p), .k op —— F.o1(T),02(T).... b L
Proof. FTirst we give proof of the — part of (i). Then, we have the
following ’implication—cha,in’:
F,é1(p), d2(p), --
— For some formulas fq,..., f, of F aud some formulas ¢;1(p), ..., ¢is(p)

we have: fi, ..., fr, @1(P)e .., Gis(P), ... b p
(Finiteness of the propositional proof)

— Fh=.=fr=dalp)= .. = diu(p)=p
(By (4))

—— Formula

fiz .= fr = dulp)= ... = dis(p) = p

is a tautology
(By (5)) -
— Formula fi= .= fi=2>¢all)=> .. .= dis(L)=>L

is a tautology

In fact, only the ——-part is the deduction theorem. But, the ——-part is almost
trivial.



_

_—

—

which completes the proof. Proof of the «— part of (¢) reads:

‘Formula

A= =2>h=2>d0a(l)=> .= ds(L)=> L

is a logical theorem
(By (5))
Formula

fio e fro@a(L), o, @is( L)
holds.

(By (4))

Fogr(L),da(L), .. F L

F,1(L),da(L), ... L

—_

For some formulas fi, ..., fr of 7 and some formulas ¢;;( L),

we have: fi, ..., fr,®a(Ll), ..

L

o @is(L),...F L

(Finiteness of every formal proof)

FA= .= f=2oa(l)= . = (l)=>1

(By {4))

Formula

iz 2 fizda(l)= . 2> é(L)=> L

is a tautology
(By (5))
Formula

fi = .= fr = dulp) =
is a tautology
Formula

f1 = .= fr = ¢i1(p) =
is a logical theorem

(By (5))

e = Gis(p) = p

v=> qs;s(p) = p

I

...,(b.gs(_l_)
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— Formula'
| Jiooos frda(p), - dis(p) F p
holds.
(By (4))
— F,61(p). ¢2(p), ..k p

which completes the proof of (i).
We have omitted a proof of (ii) because (ii) can be proved in a similar way
as (1). "
Notice that Lemma 1 can be expressed by the following words:
A literal 4 is a logical consequence of the given set if and only if the
corresponding® set is inconsistent.
Now we prove the following lemma.

- Lemma 2. The equivalence
(7) FomV..vp b LlL— Fkap,...,FFp
) (where p; is any literal)

15 true.
Proof. We have the following ’equivalence.—chain’:
F,mV..Vpr L
— FFE(pV..Vpr= 1)

(By (4))
— FrE{=p1 A Apg)

(Using a well-known tautology)

— FFk-p,....,FFp

which completes the proof.

Besides (6) and (7) we emphasize the following obvious equivalences
(8) FT— F,LFL
) o FTHA— FFA

. (A is a literal or the syfnbél 1)

2A litéral is an atom or the negation of an atom
*i.e. one of the sets F, ¢1(L), ¢2(L),... or F,¢1(T), 62(T), ... -
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Suppose now that F is a given set of clauses and ¥ is a literal or L. Is
it possible that using the equivalences (6), (7), (8), (9) one can establish
whether or not % is a logical consequence of 77 In order to answer this we
introduce the following inference rules*

(R1) F,LbF L e FT

(R2) F,é1(p), d2(p)s .. Fp — F,p1(L);ha(L), ...k L
F,d1(p), d2(p), ... b =p — F,1(T), ho(T), ... F L

(¢:(p) is any clause containing p)

(R3) F.;pyV...Vppe b L — FF-apy, ..., FEpg
(where p; is any literal)

(R4) F,THFA— FFA
(A is a literal or the symbol L)

We emphasize that in the sequel for the set 7 we suppose that it does not
contain a clause of the form ...q V —q...,where q is any atom. Namely, such
a formula is equivalent to T, consequently it should be omitted®. Similarly,
if it happens that by applying rule (R2) some clause becomes equivalent to
T then we will also omit it.

Roughly speaking rules (R1),(R2),(R3),(R4) are used as follows:

We start with a question (a sequent) of the form F & 1 and apply rules
(R2),(R3),(R4) several times. If at some step we can apply rule (R1),
the procedure stops with the conclusion that 1 is a logical consequence
of F. However, if at some step we obtain the sequent - L (then F is
an empty set) the procedure stops with the conclusion that 1 is not a
logical consequence of F. ‘

Example 1. Answer the following questions:
1)pkp?2)p,gtp?3)Fp?4)qkp?
5)-qVp,gVpktp?6)p,-pVqV-r,pV-ogVs,pVsVtk L?

where p,q,T,s,t are atoms. '

Answer.

1) Applying (R2) we obtain the sequent Lh1 and by (R1) we get the
sequent - T so the answer is: Yes.

*We point out that the set F may be also an empty set.
®This is compatible with rule (R4)
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2) Applying (R2) we obtain a new question, i.e the sequent L,gq + L, and

now applying (R1) we obtain the sequent - T so the answer is: Yes.

3) Applying (R2) we obtain the sequent F L so the asnwer is: No.

4) By (R2) we obtain the sequent ¢ - L and after that by (R3) we obtain

the sequent - —¢. Finally, by (R2) we obtain the sequent F L such that the

answer is : Ne.

5) By (R2) we obtain the sequent —g,¢ - L. Now by (R3) applied to the

literal ~¢ we obtain the sequent ¢ b ¢, further by (R2) we obtain the sequent

L+ 1 and finally by (R1) we obtain the sequent - T so the answer is : Yes.

6) Now by (R3) applied to clause p we obtain the sequent

“pVqgV-ar,pV-oqVs,pVsV -tk -p

By (R2) (and (R4) applied twice) we obtain the sequent

gV -rk 1 |

At this step applying (R3) we obtain two new sequents, l.e. questions
F-¢g?and 177

The answer to the first question is No, so the final answer is also: No.

Concerning rules (R1)-(R4) we have this lemma.

Lemma 3. (Soundness of rules (R1)-(R4)). Let F be any set of
clauses. Suppose that we start with a sequent F F . where ¥ is a literal
or the symbol L. If using rules (R1)-(R4) we obtain the sequent = T or the
sequent - L, then v is / is not a logical consequence of set F, respectively.

Proof follows immediately from the fact that rules (R1)-(R4) are based on
logical equivalences (6)-(9).

Let now F F ¢ be any sequent. By Val(F F ¢) we denote its truth value,
defined by:

If ¥ is a logical consequence of set F then Val(F & ) is true
otherwise Val(F I ) is false.
According to this definition and to rules (R1)-(R4), i.e. to equivalences
(6)-(9) we have the following equalities

(10) Val(F T)= true
Val(lF L)= fal.ée |
- Val(F, L F_L)'-_—'true 7
Val(F, T + )= Val(F F )

Val(F, é1(p), $a(p), - F p)= VallF,dy(L), $a( L), -+ L)



Val( 7, ¢1(p), d2(p). - b —p)= VallF,¢1(T), 62(T), ... F L)
(¢i(p) ts any clause containing p)

Val(F,p1V ...V pp F 1)
= Va(Ft -p;) and . . . and Val(F F —pg)

(where p; is any literal,i.e. an atom or the negation of an.atom)

Suppose that F is a finite set. Then, in fact, these equalities define the func-
tion Val recursively on the number of all member of set F. Consequently,
these equalities suggest how to calculate Val(F + %). In other words we
have the following assertion:

(11) If F is a finite set then one can effectively calculate Val(k o), i.e.
establish whether or not ¢ is a logical consequence of set F.

Next we will prove the following basic theorem.

Theorem 1. (Completeness) Let F be a set of some clauses and ¥ a
literal or the symbol L. Then:

¥ 1s a logical consequence of set F if and only if starting with F + ¢
and applying rules (R1)-(R4) a finite number of times one can obtain.
the sequent - T.

Proof. The if - part follows immediately from Lemma 3. To prove the
only if - part suppose now that ¢ is a logical consequence of set 7. Then
¥ is a logical consequence of some finit e subset A of set F (for: every
formal proof is finite). Next, by (11) we conclude that starting with the
sequent A F 1 and applying rules (R1)-(R4) a finite number of times one
can obtain the sequent + T. Consequently, also starting with the sequent
F F % and applying rules (R1)-(R4) a finite number of times one can obtain
the sequent + T. The proof is complete. ’
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