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1. There are many important instances of formal theories (cf., for exam-
ple, [4]), as propositional calculi, predicate calculi, formal arithmetics, axio-
matic set theories and so on. Within the theory of universal algebras the
concept of variety is of particular interest (cf. for example [2]). Every variety,
with appropriate precision introduced, becomes a formal theory. Formal theories
of this kind contain formulae of the form ¢, =¢,, where ¢, and ¢, are terms
(constructed out of some primitive symbols, constants, individual variables and
operation symbols; cf. [2]). Axioms are some formulae given in advance, as
formulae of the form ¢=¢, where ¢ is any term. The rules of inference are (in
agreement with elementary properties of equality):

h=t, ti=t, =t =ty o, =t

=1 1=t ot ... L,=ot'.. .t

M

(where ¢; is any term and « an operation symbol of length ).

A formal theory of this kind we shall call equational formal theory. One
of our aims is to investigate the connection between equational and other
formal theories.

2. Let 7 be a formal theory with axioms 4, (icI; I is a given set of
indexes). By 7 (~) we denote the equational theory defined as follows:

1° The formulae of 7 play the role of individual variables of 7 (~);
the symbol & is an operation symbol? of length 2.

2° The axioms of J (~) are formulae of the form
(2) (@) A~T (T is an arbitrarily chosen axiom of 7; i&I),
(b) A~A, & AB~& B4, && ABC~& A& BC and & AT ~A4
(4, B and C are terms of T (~)).

1) The terms of 7 (~) satisfy the following definition: (i) formulae of 7 are terms
of 7 (~); (i) if 4 and B are terms, then & AB is a term; (iii) every term is obtained by
a finite number of applications of (i) and (ii).

The formulae of 7 (~) are of the form 4~B, where A4 and B are terms and ~ and &
are not among the symbols of 7.

g%
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(c) Let
d,..., O,
D

be any rule on inference of 7; then the formula
&...&0,... O~8&&... &D,... D, D
is an axiom of 7 (~).
3° The rule of inference of 7 (~) are
A~B A~B, B~C A ~B, A,~B,

B~A A~C & A, A,~&B, B,
(4, B,... are terms of G (~)).

Note. In the sequel we shall write A& B, A& B& C etc., instead of & AB, & A& BC
etc., respectively. The axiom (b) prevents us from possible confusion. For example, in this
case axiom (c) becomes: @, & ... & P~P, & ... & O & D.

As we shall see soon, the symbol & is related to the metatheoretic and
while the symbol ~ is, so to say, a formalization of the relation that we call
equiconsequence. In fact, we prove

Theorem 1. Let P,..., P, Q,,..., Q; be formulae of J; then

—P &...& P,~Q,&...&Q, iff P,..., P, —Q,, ..., Q, and
T(~) T

Q,..., 0, IEPI, .oy P
We shall prove two lemmata first.

Lemma 1. If P,..., P, —Q, then F—P &...& P~P &... &P, &Q
T T(~)
where P; and Q are formulae of 7.

Proof. We use induction on the length n of the shortest proof of
P,..., P 0.
T
Case n=1. Q is either P, (for some 1<i<r) or 4; (for some j&I). In
both cases we have

—P&...&P,~P &... &P, & Q
T(~)

(for we have
F—P&...&P~P &...& P, &P,

T(~)
—P&...& P,~P &...&P,& T, F—A,~T)
T(~) T(~)

Case n>1. The following subcases are possible:
(i) Q is P; (for some 1<i<r);
(i) Q is 4; (for some j&TI);
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(iii) Q is a consequence of some preceding formulae by a rule

D , O,

13 -

0]

In both (i) and (ii) we proceed as in Case n=1. In (iii) by induction

hypothesis we have

-—P &...& P,~P &...& P, & ®,
T(~)

—P &...&P,~P,&... & P,&®,.
T(~)

Therefrom we derive immediately

3
i.e.,

@

[for

ie.

P, .

—P&... & P,~P &.. . &P,&D &...& D,

T(~)

P &...&P~P&.. .P&D &.. &0 &D
T(~)

F— 0 &.. &D~D &... & D& D]

T(~)

From (3) and (4) we derive

—P &... &P,~P &...&P,&QD
T(~)

—P &...& P,~P, &... & P,&Q (for Q is D).
T(~)

Lemma 2. If P,,..., P,=Q,,..., Oy then
g

—P &...& P,~P&... &P &0 &... &0,
T(~)

This lemma is an immediate consequence of Lemma 1. Indeed, from

o, P,—-0Q,,..., Q,, by Lemma 1, it follows that
T

—P &..&P,~P &...&P,&Q,
T(~)

— P &...&P~P &...&P,&Q,
g(~)

are theorems; hence, —— P, &.. .&P~P &... &P &0 & .. &0Q,.

T(~)
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Now, we shall prove Theorem 1.
The ”if*“ part. Suppose that P,,..., P, - Q... Q and Q, ..
T

vo» Q, =P, ..., P, Therefrom, by Lemma 2,
T
F—P&..&P~P &... &P, &0, & ... & Q,

T(~)
and
F—0,&...&0,~0,&... &0, &P & ... &P,
T(~)
and hence
F—P&..&P~Q &...&Q,.
T(~)
The ,,only if part. Suppose that FP&...&P,~Q &...&Q, and let
A,..., 4, B,..., B, be arbitrary formulae of 7. Let us associate the

sequents
14

Ao Ay By Bpand B, Byl 4

to the formula
Al&...&AI,NBl&...&Bq

and let ¥ denote this association.

Applying the mapping ¥ to the axioms of 7 (~) we obtain proofs from
hypotheses in 7. For example, such proofs from hypotheses are A4, T,
T

THEA4; A4, TEA4 ©,..., 0 -0,..., ¢, ® and so on.
T T T

Moreover, the mapping ¥ is in accordance with rules of 7 (~) — in
fact, the rules of 7 (~) are translated into true statements about proofs from
hypotheses in 7. For example, to the rule

A~B, B~C
A~C
there corresponds the statement

If 4B, B4, B—C, CHB, then AC, CFIA.
T g T T T T

In accordance with consideration, if we apply ¥ to the supposed theorem
P&...&P~0 &... &0,

we obtain proofs from hypotheses

P,...,P,—=0Q,...,0 and Q,,..., Q,\P,...,P.
74 T

This completes the proof of the theorem.
According to Theorem 1, just proved, we can say thatin a sense 7 (~) is a for-
malization of deduction relation of 7. In particular, by Theorem 1 it follows that

A-B, B+—A4 iff —A~B.
T 7 T(~)
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3. By the next theorem a connection is established between the theorems
of 7 and some theorems of 7 (~).

Lemma 3. Let 4 be any formula of 7/; then

T T~
Proof |4 iff AT, THA (by definition of |-)
iff —A~T (by Theorem 1)

Hence, 4 iff mA~ T.

Let f denote a mapping of the set For () (the set of formulae of 7)
into the set For (J (~)), defined by equality

FA)EA~T.

According to Lemma 3, by the injective mapping f the set of theorems
of T is mapped into the set of theorems of T (~). Moreover, the mapping
“translates* the proofs of 7 into (incomplete, but completable) proofs of T(~).
In fact:

(i) if 4, is an axiom of 7, then f(4,), i.e. 4,~T is a theorem of J;
i) if

) , D,

10 v -

()
is a rule of 7, then in J(~) it is the case that?

f(@), ..., (D) (D)
D ~T,. .oy Q~THO~T

ie.

Having in mind the properties of the map f (it is 1—1, it translates
theorems and proofs of 7 into theorems and proofs of (~)) we can say:

T is isomorphically embedded in T(~) by the mapping f.

In this way we conclude that the following theorem is valid.

Theorem 2. Any formal theory can be isomorphically embedded in
an equational formal theory.

4. Let 7 be a formulation of the classical propositional calculus, say P,
of [1]. The axioms (inessentially modified) are formulas of the form?

A=>(B=A), (A=>(B=>C)=>((A=>B)=>(4=0C)), (14=>1B)=>(B=>4)

(4, B, C are propositional formulas),

2) In:i;ed, let ®,~T,..., ®e~T be hypotheses. Using them we obtain @, &..
L &Du~T &... & T, ie. © &... & Dp~T. But we have @, &... & Dp~D, &... & Dk & D
and hence @, &...& @ & ©~T. Therefore, T & ©~T and finally, O~T.

3 The primitive connectives are = and 7. The connectives A, V and < are defined
in terms of the primitive ones: for example, AV B stand for (4=>B)= B, etc.
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The only rule is modus ponens:

A, A>B
3 .
We prove
Theorem 3. Let 4,, ..., A4,, B, ..., B, be any formulas of P,, then
—4A4, & . &A,~B &... &B, iff A NA--. ANA,SBA - -+ AB,.
Py(~) Py
Proof. I——Al&...&Al,NBI&...&Bq iff
Po(~)

14

A, ..., AI,}P—BI...., B, and B, ..., BqIP—Al,..., A
2 2

(by Theorem 1); but this is the case iff
A1/\"'/\Ap}|;B1/\"'/\Bq and Blf\"‘/\BqL‘,;Al/\"‘/\Ap
(this is provable in P,); again, this is the case iff
[I—;Al AN---ANA,>BA--- AB, and EBIA “ABm AN NA,
(by deduction theorem); by definition of <, this is the case iff
IP—ZAI/\“ . /\Ap<:>B1/\' . /\Bq.

Let us note that the preceding proof relies on the fact that in 7 viz.
P, the following conditions are satisfied:

Condition 1. There is an operation in 7, in symbols A, such that
A, BI—ANB and ANB |- A, B (4, B are formulas of 7).
T T
Condition 2. There is an operation in 7, in symbols =, such that
A =B iff A= B (4, B are formulas of 7).
T
According to Theorem 3. to any theorem
A&.. . &A,~B &... &B,
of P,(~) there corresponds the theorem
AN NA,SBA---\B,
of P,. In other words, by substituting A and < for & and ~, respectively,
the formulas of P,(~) are translated in to formulas of P,, and, moreover,

theorems are translated into theorems. Also, (this is proved easily), by this
injective mapping the proofs of P,(~) are translated into (completable) proofs
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of P,. On the other hand, the converse is also true in a sense; for example,
to any theorem A of P, there corresponds (by Lemma 3) the theorem A~
of P,(~). Therefore, P,(~) is isomorphically embedded in P,. The calculus
P,(~) we shall also call an equational reformulation of P,.

Remark. Let us note that the axioms of P,(~) can be transformed into axioms
ot Boolean algebra (cf. for example, [3], p. 5)

ANT~A AV T~A

ANTA~TT, AV TA~T

(B) ANB~BANA, AV B~BVA
AN(BY C) ~(AAB)V(ANC), AV(BAC)~(AVB)A(AYC)

and, in addition®
) A&B~AAB
(4, B, C are any formulas of P,; T is, say, p = (p = p))-

Proof. Using axioms and rules of P,(~), we prove easily ("), (5), (6).

The formula (5) can be proved as follows. We have

A, B+~ ANB, ANBI-A, B
P, P,
and, hence, by Theorem 1
-—A&B~AAB.
Py(~)

Furthermore, the proof of, say

A~B
1A~ B
is as follows. Suppose that |-— A~B; then according to Theorem 3,
Py(~)
- A< B.
P,

Hence, using the well-known properties of P,, we conclude that

=14« 1B,
Pl-

and hence, again by Theorem 3, we obtain —— 71 A< 7 B.
Py(~)

Let us assume now that (B), (5), and (6) hold and let us prove the axioms and rules
of P,(~). Using (B), (5), and (6) we can prove various facts about Boolean algebra, such as

774A~A, TAAB)~TAV1B, A=>B~TAVB etc

4) Besides the axioms given above, we assume a number of properties of equality
(~ stands for =):

A~B  A~B, B~C A~B A~B, C~D  A~B, C~D

6) A~A, s
B~A A~C 7A~71B AANC~BAD AVC~BVD

A~B, C~D
A&C~B&D
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Using the last formula, we easily prove formulas
A>Bo>A)~T, (A>B>C)>((A>B) >A=>C)~T,
(TA>1B) > B>A4)~T

i.e. a number of axioms of P,(~). These axioms are of the form (2) (a). The axioms of the
form (2) (b) are proved easily, using (5). In a similar way we prove axioms of the form
(3) (c), i.e. the formula A& (4 > B)~ A& (A > B)& B.

Let 7 be a formal theory satisfying conditions 1. and 2. This means
that the symbols A, = are either primitive in 7 or defined® such that we
have 1. and 2. viz.

A, B—AAB and AANB+—A, B
T T

AlB iff -A=>B
T

Then we have the following theorem which is proved almost in the same
way as in the case of P,.

Theorem 4.

1° 4 iff ——A~T
T T(~)

2° A B iff —— A~B.
T T(~)

In other words, if the conditions 1. and 2. are satisfied, T(~) is an
equational reformulation of 7.

Finally, let us note that there are various formal theories satisfying con-
ditions 1. and 2. — for example, the classical propositional calculus, the intui-
tionistic propositional calculus and many others.
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5) Then, for example, 4 A B stand for a formula constructed in some way out of sub-
formulas of 4 and B.
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