PUBLICATIONS DE L’ INSTITUT MATHEMATIQUE
Nouvelle série, tome 12 (26), 1971. pp. 85—94

AN ALGORITHM FOR THE SOLUTION OF A 2x2 SYSTEM
OF NONLINEAR ALGEBRAIC EQUATIONS

Jovan J. Petri¢ and Slavisa B. Pres§i¢
(Communicated April 12, 1971)

Summary

This paper treats the problem of simultaneous determination of all solu-
tions of the system of algebraic equations

Ji(x,))=A4x>+2B,xy +C,y*+ 2D, x +2E,y + F, =0,
Jy (e, »)=4,x*4+-2B,xy + C,y?+2 D,x +2E,y + F, = 0,

on the assumption that they are different. The algorithm is based on the use
of basic ideas of an iterative procedure for factorisation of polynomials given
in papers [1] and [2]. This analysis would be preliminarily made and its analogy
of treatment would be transferred to the construction of algorithm for the
solution of given problem. For treatment of this kind of problem immediate
cause was conditionned by practical needs.

Introduction and statement of the problem

In papers [1] and [2] an iterative procedure for simultaneous determination
of all roots of an algebraic polynomial was given, under the assumption that
they differ one from another.

For example, in the case of an algebraic equation
M Px)=x>+p,x*+pyx +p, =0,

whose roots are a, b, c, it was demonstrated that they represent limit values
of a series a,, b,, ¢, defined as follows

Gy.1=0a,— 'P(an) s
(an_bn) (an_cn)

P®,)
2 by =b,————n
( ) n+1 n (bn-—dn)(bn—cn)
Cre1=Cn— P(f")“-

(cn - an) (Cn —-b n)
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For starting data a,, b,, ¢,, approximative values of roots a, b, ¢ are
selected.

Otherwise, formulae (2) are derived from following polynomial identity
(3) (x - an+l) (x - bn) (x - cn) + (x_ an) (x - bn+1) (x - Cn) +
+(x_an)(x_bn)(x n+1) 2(.X a)(x bn) (x n)ZP(x)’
that may be written in this way
(4) (x - an) (x - bn) (‘x - cn) - (an+1 - an) (x - bn) (x - cn) -
—(byy1 ~ b)) (x—€) (x—a,) = (Cpy1 =€) (x— @) (x = b)) = P (%)
Now, let’s observe the set of all polynomial expressions of 4,,8b,,¢,

Various constants, as well as a variable x, may take part here. For example
such is the case for

a,+b,, ab,+3¢c,, x—a,, (x—a,)(x—>b,) (x—c,), etc.
In this set we define the operator 3 in following way

def def def
8an = Gpy1— s 8b, = b,.1—by, SC = Cpy1—
def - . . . .
®) Su =0, (u is an expression which does not include index n)

n

def def
S(u+v) = du+38v, S(w) = vdu+udv (u and v are the expressions

whatsoever); it means that for the operator 3 similar formulae are valable as
for the differentiation. For example:

S(a,+b,)=38a,+3b,=a,, ,—a,+b,,,—b,,
S(x—a,)=8x—8a,=0—(a,,;—4,)=0,— Gy,
S[(x—a,) (x—=b,) (x—c)l=(x—b,) (x—¢,)d(x—a,) +
F(x—a)(x—c)d(x—b)+(x—a)(x—b) S (x—¢,)=
(X ~b) (¥ =€) @y —yr) + (X = a,) (x— ) (B — b)) +
+ (X —a,) (x—b,) (63— Cas)-

On the basis of last equality (from above mentionned examples) the for-
mula (4) may be written in this way

(6) (x—a,) (x—b,) (x—c,)+3[(x—a,) (x—b,) (x—¢,)]—P(x)=0.
Introducing the designation
0,=(x—a,)(x—b)(x—c)—P(x),
the equality (6) may be presented in the from
(7 0,+30,=0,

as we have
0,+30,=(x—a,) (x—b,) (x—¢,) - P(x)+8[(x a,) (x—b,) (x—¢c,)—
—P)]=(x-a)(x—b)(x—¢c)—P(x)+
+8[(x—a,) (x—b,) (x— )] -8P(x)=(x—a,) (x—b,) (x—¢,) +
+3[(x—a,) (x—b) (x—c)]—-P(x), (@P(x)=0).
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Basic method
Let’s now consider the system of equations
Ji(x, )= A x*+2B,xy+C\y*+2D,x+2E y+F =0,
® J, (%, p) = A, x>+ 2B,xy +C,y*+2D,x +2E,y + F, =0,

supposing that its solutions are (a, ®), (b, 8), (¢, v), (d, d).
Following schema for further treatment may be useful

Cle,vy 'Did,8)
"Mim,y)

The system of equations (8) is equivalent to the system of equations

AB-CD=0,
€)
AC-BD =0,

where AB, ..., BD denote following expressions
def v
AB=PB-0)(x—-a)—(b—a)(y—a),
def
BD=(3~B) (x—b)—(d—-b)(y—B).

Naturally, AB=0, ..., BD=0 are the equations of straight lines through the
points 4 and B, ..., or B and D respectively.

Equations of the system (9) are certain linear combinations equation
of system (8); in other words there exists certain constantes A, ., p, ¢ so that
following equalities are valable

AB-CD +2\J, (x, y) +pJ, (x, ¥) =0,
(10)
AC-BD +oJ, (x, )+ oJ, (x, y) =0.

Basic idea of algorithm given in this paper is this: iterative procedure of
the system of equations (8) in the limit shall result in the form (10).
Pursuant this point, preliminarily we introduce the designations

'RnZAan . CnDn +7\n‘]1 (x9 y)—f—[.Lng (x’ y),
S,=A,Cy-B,D,+0,J,(x, y) +9,J,(x, y).
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whete 4,B,, ..., B,D, are following expressions
A4,B,=@,— ) (x—a)—(b,—a,)(y—-a,),
CoD, =, =) (x =€) = (d,— &) (V=)
A4,Cp=(tp—2) (x—a,) = (¢, —a,) (y —,),
B,D,=@,~B,) (x—b,)—(d,—b,) (y—B).
In expression for R, and S,, 12 series are participating

an’ 0(.", bn’ Bn’ cn’ Yn’ dn’ Sn’ >\n’ “‘n’ pn’ an’

Qur aim is to define these series so that

a,—>a, o,—>0 ..., P,~>p ¢,—>¢,
when n— 0.

Conformably to equation (7) which refer to algebraic polynomials, for R,
and S, following conditions are posed

R,+3R,=0,
an
S,+8S,=0.
Now, operator 3 refers to polynomial expressions for
an’ an’ bn’ Bn’ et Pn’ CPn
and is introduced with equalities similar to equalities (5).

On the basis of the definition of operator § we have
3R,=38[A4,B, - C,D,+7\J, (x, ) +u,/, (x,V]=C,D,d4,B,+
+A4,B,3C,D,+J, (x,y) O\, +J, (x, y) du,, =
=[G, —¥w (x—¢) = (d,~c) ¢ —v)]- S [(B, — ) (x — @) —
= (b, —a,) (¥ — o)) +[B,— ) (x—a,) -
= (ba—a,) = )] 813, — 1) (x— ) = (dy =) (= 1)] +
+ 1 (6, ¥) O, + T, (%, ) Oy =[(Bry 1 —Br— %1 + ) (X — @) —
—Br— %) (@1 =) = (Bpr1—b,) = (@1 +2) (Y — ) +
+ by~ ay) (%1 = %) [B, — ¥ (x =€) = (d,— c,) U — Y] +
i1 =30 = Yui1¥n) (X =€) = Bu—¥a) (Cp1— ) —
~(@pr=d =1 +6) V= YD) + (=) Wps1 — Y 1B — ) (x— ) —
—(by= ) 0 — %))+ gy 1 =2 Ty (6, ) + (i1 — 1) T2 (%5 9)-

Similar procedure lead us to the expression for 85S,, too. Using derived expres-
sions for 3 R, and &S, equalities (11) become
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[Br— ) (x—a,) — by — @) (v — )] - [, — Yn) (X — €) = (d, — 6,) (P — v )] +
+Bri1—Br— %1 t2) (x—a,) — B, — ) (@,,,—a,) -
—(bpr1—b—a, +a) y—) +(b,—a,) (%, — )] [G,—v,) (x—¢,) —

(12) (=) =YD H[Gnr1 =8 —Yni1 + Y0 (x—€,) —
—@p1—dy— i1+ ) 0 —Y) +(dy— ) i1 — Y1 (B — ) (x—a,) —
— (b, —a) =0 )] + A, I (X, 9) + 1T, (X, ) =0,
[(Yn— ) (x—a,) — (¢, — a,) v — )] - [, —B,) (x—b,) —
=@y =b) V=B +[(Vns1—Yn— %y + o) (x—a,) —
—(n— %) (@ns1 = @) = (o1 = €=y +a) (¥ — ) +
(13) + (€= ay) (g1 — )] [, — B,) (x ~b,) ~ (d,— b,) (y — B)] +
F[Gns1 =3 —Brir B (x =) — 3, —B) (b1 — b)) —
— @1 —dy by +0) (¥ =B+
+ @y —b8,) Bri1— B (Y, =B (x—a,) —
= (=) (Y = )]+ Pui1 1 (%, ¥) + i1 I, (%, ) =0.

Equalities (12) and (13) represent polynomial identities. These identities
facilitate to determine

an+1a Fpt1s bn+1’ Bn+1""’)\n+l’ Brs1s Prs1s Pr+1
as the functions of
an’ O(n, bn’ ﬁn’ cns Yn’ dn, Sn-

This determination shall be accomplished in such a way that in equalities (12)
and (13) instead of (x,y) we replace (a,, «,), (b,, B,), (., Y,), (d,.,3,), after
that, following eight equations are obtained

Jl (arﬂ o(n) 7\n+1 + J2 (an’ o('n) p‘n+1 —
(Sn - Yn) (an - cn) - (dn - cn)(oc,, - Yn)
=aq, (an - sn) + %p (bn - an)’

Jl (an’ Otn) Pn+1+J2(an9 “n)@rwl _
(Sn - Bn) (an_bn) - (dn - bn) (Ocn - Bn)
=a, (O(n—'Y") + %y (cn - an)’

Jl (bn’ Bn) )‘n+1+‘]2 (bn’ ﬁn) l‘l'n+1 -
(8n - Yn) (bn - cn) - (dn_ n) (Bn - Yn)

=bn (O(”-—-Bn) + Bn (bn—an)’
Jl (bn’ Bn) Pr+1 +J2 (bn’ B )(Pn+1

17 n—'sn)bn+ -+ dn—bn) n+ + + = =
o e v P (Y — ) (by—a,) — (c,—a,) B,—,)

= bn (Bn—Sn) + Bn (dn_bn) s

(14) (an_Bn) Ay +(bn—an) %1t

(15) (“n—Yn)an+1+(cn_an)’1n+l+

(16) (dn~Bn)bn+1 +(bn_an)Bn+1+
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Jl (Cns Yn) 7‘n+1 +J2 (Cn, Yn) Bria -
(Bn_an) (cn_an) - (bn_'an) (Yn—an)

=0, (Yn_'sn) +Yn (dn_'cn) ’

(18) (Yn—sn) cn+1+(dn_cn) Yn+1+

Jl (C,,, Yn) Pn+1+‘]2 (cn’ Yn)cPrH-l —
(Sn_ﬁn) (cn_bn) _(dn—bn) (Yn—ﬁn)

=C, (an - Yn) +Yn (cn - an) H

(20) (Yn_sn) dn+1+(dn_cn) 8rH-l‘l‘ Jl (d,,, 8,,) )\n+1+J2 (d,,, 3") “"H—l =
(Bn - o(n) (dn - an) - (bn - an) (Sn - o('n)
= dn (Yn - 8n) +8n (dn - cn)’
Jl (dn’ 8n) pn+l+JZ (dn’ 8n) Prt1 —
(Yn - Ocn) (dn - an) - (cn - an) (Sn - o('n)

:dn (pn_ n)+8n (dn—bn)

(19) (an_Yn)cn+1 +(cn_an)Yn+1+

(21) (Bn_sn) dn+1+(dn_bn) 8n+l+

\ A (g, o)

<n (bn’ 2 n)

Cileps Ty D8,
M,v,)

If we designate, further, on the basis of given schema, with L, and M,
average points of straight lines 4,B, and C,D,, and 4,C, and B, D, respectively,
coordinates of these points are given by formulae
] = (dn - Cn) [(0(.” - Yn) (bn - an) —a, (Bn - an)] + ¢, (871 - Yn) (bn — an)

(bn - an) (8n - Yn) - (dn - cn) (ﬂn - O(”)

0 — (Bn - O('n) [(cn (8n - Yn) ~Yn (dn - cn)] + (811 - Yn) [an (bn - an) —4a, (Bn - o('n)]
" (bn - an) (8n - Yn) - (dn - cn) (Bn - O(n)

m. = (dn - bn) [((‘X,n - Bn) (cn - an) -4, (Yn - a'n)] + bn (Sn - Bn) (cn - an)
" (cn - an) (Bn - Bn) - (dn - bn) (Yn - O(n)

Qll _ (Yn - an) [bn (Sn N Bn) - Bn (dn - bn)] + (8n _Bn) [“n (cn - an) —a, (Yn - Ocn)] .
! (€2 =) Bu—B) — (dy— b,) (v, — %)
Substituting in basic formulae (12) and (13) values for (x, y) with cal-

culated values (/,, 0) and (m,, {,) we obtain similarly to equations (14)—(21),
four equations more

(22) Jl (ln’ 6n) )‘n+1+J2(ln’ en) p‘n+1=0’

L.(1.0)

b

3
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(because the point L,(y,, 0) lays in the intersection of straight lines A4,B,
and C,D,).

[On—Yn) Gpix + (€= L) %y + (@, =8) €y +
+(l,— ) Va1 G = By 1, — b)) —(d,— b,) B, - B +
+[0,—8) 0,1+ (=) B + Br— 0 s +
+ (= b,) 3,11 [(va— %) (I, — @) — (¢, — a,) (0, — )] +
(23) +J s 02 ensr + 92 (s 8) @0y =l(vn — ) (I, — a) —
—(c,—a) 0, — )] [(d,—b,) 0, B)— 3, —B) (L,—b)] +
+la, 0, — v+, (¢, L) + ¢, (0, = 0) +
+¥n (= a1 - [3,—By) = b,) — (@, — b,) (0,— ]+
+[b, (0, 8,) +B, (d,— 1) +d, (B, —9,) + 3, (I, — b}
X [(Yn— %) Uy — @) = (¢~ a,) B, — )],

(=B @psy + (B —my) %y + (@ =) by s +

+(m,—a,) Byl [y — 1) (M, —¢,) — (d,— ¢,) (b — Y]+

+(b, =3 Cnsi + @y =m) Yo 1+ (Y= Y) dyir +

+(m,—¢) 8, )1 B~ ) (m,—a,) — (b, — a,) (Y, — )] +
(24) +J1 (M Y) Mgy + 5 (M, $) =

=[Bn— ) (m,—a,) — (b, — a,) (P — )] - [(dy — ) (b —¥n) —

— (B —¥n) (M, — )] +[a, (b, — By) +aty (b, — My +b, (2%, — §,) +

+ By (M, — )] - [(3,— ) (my, — €)= (d— €,) (b — Y] +

+ ey (b —8,) +, (dy —m,) +d, (v, — ) +

+3, (m, — ¢} - [(B,— ) (m, — @) — (b, —a,) (b, — )},

(25) Jl (mn’ ¢n)9n+1+']2 (mn, ‘.I),,)CP,,+1=O,
(because the point M, (m,, $,) lays in the intersection of straight lines 4,C,
and B,D,).

System of equations (14) — (25) represents a system of linear algebraic
equations which aids the determination of series

an+1’ an+1’ bn+1’ Bn+l’ R | )\n+1’ V‘n+1’ pn+1’ cPn+1
in function of series
an’ a’n’ an’ Bn, cn, Y”’ dn’ 8”‘

In relation to these series following assertion is valable:

If the series a,, o,, b,, B, Cus Yns du> Ops > Wy» P> Pn CONVErges one
after another towards a, «, b, B, ¢, v, d, 8, A, &, p, ¢ and if hp—pu#0, then
the points A(a, o), B(b,B), C(c,Y), D(d,d) determine all solutions of system (8).
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Proof.
Equalities (12) and (13) in limit case give
- x-a)-(b-a) (-] [O-7)x~-)—(@d-) (y-V]+
+A (%, ) +ud, (x, y) =0,
(y—)x—a)—(c—a)(y-)]- [B-B) (x-b)~(d-b) (y—B)] +
+eJi(x, ) +9J,(x, ¥) =0.
On the basis of previous equalities taking into account the assumption that
Ap—pup#0, it may be concluded that the system J,(x, ¥)=0, J,(x, y)=0 is
equivalent to the system
B-0)x~a)~C-a)(y—)]- [@-7)(x—-c)—(@d—) (y—7)] =0,
(Y- &x-a)—(c-a) (y-a)]- [C-B) (x-b)-(@d-b) (y-P)I =
The proof is finished, as all rolutmns of that system are the points 4 (a, @),
B, B), C(c, 1), D@, ).

Note. On the basis of investigations with are not completely finished
it may be assumed that the convergence is quadratic.

Application

Progressivity of application of exposed algorithm may be seen from the
following: On the basis of given starting data

(@y; %), (By> Bo)s (co> Yo)s (do> 3p)

by use of formula for [, 0, m, {, we first calculate the values (I,, 8,), (mq, ;).
In this way a complete group of data is formed, necessary for calculation —
on the basis of the system of linear algebraic equations (14)—(25) of values
(@), &), (by, By, (c1, v, (@i, 8), A, 45 01,9, and they, after calculations
by using formulae for I, 0, m, ¢ of values (I, 6), (m,,90,), represent first
corrections of initial conditions. Further procedure continue in the same way,

by calculating (a,, ay), (b, By, (€25 Y2)s (drs 35 Mgy g5 2> @p, UMMl results
of desired precisions are obtained.

This procedure will be illustrated by following example.
A system of equations is given

Ji(x, )=x2—4xy +2y*—x—-2y=0,

Jo(x, y)=3x*—14xy +2y>—3x+8y=0,
its solutions are known

A(a; 0)=A(1; 3), B(b;B)=B(5; 1),

C(e1)=C(0;0), D(d;8)=D(1;0).

By the application of exposed algorithm it is necessary to determine
solutions of the given system, under assumption that they are unkown, starting
with following initial conditions

AO (ao; “0)=Ao (2a 4): Bo (bo; B0)=B0 (31 2),
Colcps Y =Co(—1; = 1), Dy (dy; 8)) =D,y (0,5; —1).
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Results of calculations obtained on digital computer CII 10070 are given in
following table.

As may be seen from the data indicated in the table using these iterative
approximations, solutions with precision on fifth digit are obtained, with total
working time of CII 10070 computer of 1,79 min.

The same example was solved with other initial conditions
Ay (ay; op) =40 (0; 12), B, (by> Bo) = B, (3; 10)
Co(cos Yo) =Co(— 4 —2), Dy (dy; 3)) =D, (0,1; —3)
and the same solutions were obtained after twelve iterations, total computer
working time being 1,92 min.
Results of these calculations were obtained in the Laboratory for Applied

Mathematics of the MTI, Beograd. We thank S. Stamatovi¢ and M. Jova-
novi¢ for complaisance and help they extended to us.
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