ALL REPRODUCTIVE SOLUTIONS OF FINITE EQUATIONS

Slaviša B. Prešić

Abstract

Summary. An equation, the solution set of which is a subset of a given finite set, is called a finite equation. Applying some kind of algebraic structure we effectively determine all reproductive solutions of such equations (Theorem 1 and Theorem 2).

1. Let E be a given non-empty set and $f: E \rightarrow E$ a given function. An x-equation

$$
\begin{equation*}
f(x)=x \tag{1}
\end{equation*}
$$

is called reproductive [4] if the function f satisfies the identity

$$
\begin{equation*}
f(f(x))=f(x) \tag{2}
\end{equation*}
$$

All solutions of a reproductive equation can be found in a trivial way. Namely, the formula

$$
\begin{equation*}
x=f(p) \quad(p \text { is an arbitrary element of } E) \tag{3}
\end{equation*}
$$

determines all solution of (1) provided this equation is a reproductive one. The formula is an example of the so-called general reproductive solutions formula ([2], [3], [7]).

Next, any x-equation

$$
\begin{align*}
e q(x) & (x \text { is an unknown element of } E ; e q \text { is a given } \tag{4}\\
& \text { unary relation of } E)
\end{align*}
$$

which has at least one solution is equivalent to a reproductive equation [4].
Accordingly, to solve a given x-equation (4) it suffices to find any reproductive equation equivalent to (1). In this paper we are concerned with finding all such reproductive equations in case of a finite equation.
2. Let $B=\left\{\sigma_{0}, \sigma_{1}, \ldots, \sigma_{n}\right\}$ be a given set of $n+1$ elements and $S=\{0,1\}$. Define the operation x^{y} by

$$
x^{y}=\left\{\begin{array}{ll}
1, & \text { if } x=y \tag{5}\\
0, & \text { otherwise }
\end{array} \quad(x, y \in B \cup S)\right.
$$

The standard Boolean operations + and • ("or" and "and") are described by the following tables

+	0	1
0	0	1
1	1	1

\cdot	0	1
0	0	0
1	0	1

Extend these operations to partial operations of the set $B \cup S$ in the following way (6) $x+0=x, 0+x=x, x \cdot 0=0,0 \cdot x=0, x \cdot 1=x, 1 \cdot x=x \quad(x \in B \cup S)$

We consider the following x-equation

$$
\begin{equation*}
s_{0} \cdot x^{b_{0}}+s_{1} \cdot x^{b_{1}}+\cdots+s_{n} \cdot x^{b_{n}}=0 \tag{7}
\end{equation*}
$$

where $s_{i} \in\{0,1\}$ are given elements and $x \in B$ is unknown. Obviously the equation (7) is possible iff the condition

$$
\begin{equation*}
s_{0} \cdot s_{1} \cdots s_{n}=0 \tag{8}
\end{equation*}
$$

holds.
In the sequel, assuming the condition (8), we are going to determine all reproductive solutions of the equation (7).

First we introduce the following definition.
Let $\left(\sigma_{0}, \sigma_{1}, \ldots, \sigma_{n}\right) \in S^{n+1}$ be any element. Then the set $Z\left(\sigma_{0}, \ldots, \sigma_{n}\right)$ ("the zero-set of $\left(\sigma_{0}, \ldots, \sigma_{n}\right)$ ") is defined as folows

$$
\begin{equation*}
b_{i} \in Z\left(\sigma_{0}, \ldots, \sigma_{n}\right) \Leftrightarrow \sigma_{i}=0 \quad(i=0,1, \ldots, n) \tag{9}
\end{equation*}
$$

For instance, if $n=3$ we have

$$
Z(1,0,1,0)=\left\{b_{1} b_{3}\right\}, Z(1,1,1,1)=\emptyset, Z(0,0,0,0)=\left\{b_{0}, b_{1}, b_{2}, b_{3}\right\}
$$

Let now s_{0}, \ldots, s_{n} be any elements of S satisfying the condition (8). With respect to the sequence s_{0}, \ldots, s_{n} we define the so-called repro-function ${ }^{1} A: B \rightarrow B$. This is any function defined by a certain formula of the form

$$
\begin{equation*}
A(x)=A_{0}\left(s_{0}, \ldots, s_{n}\right) x^{b_{0}} \cdots+A_{n}\left(s_{0}, \ldots, s_{n}\right) x^{b_{n}} \tag{10}
\end{equation*}
$$

where each coefficient $A_{k}\left(s_{0}, \ldots, s_{n}\right)$ is determined by some equality of the form

$$
\begin{equation*}
A_{k}\left(s_{0}, \ldots, s_{n}\right)=b_{k} s_{k}^{0}+\sum_{\sigma_{k} \neq 0, \sigma_{0} \cdots \sigma_{n}=0} F_{k}\left(\sigma_{0}, \ldots, \sigma_{n}\right) s_{0}^{\sigma_{0}} \cdots s_{n}^{\sigma_{n}} \tag{11}
\end{equation*}
$$

[^0]assuming that coefficients $F_{k}\left(\sigma_{0}, \ldots, \sigma_{n}\right) \in B$ satisfy the condition
\[

$$
\begin{equation*}
F_{k}\left(\sigma_{0}, \ldots, \sigma_{n}\right) \in Z\left(\sigma_{0}, \ldots, \sigma_{n}\right) \tag{12}
\end{equation*}
$$

\]

For instance, if $n=2, k=1$ the equality (11) reads

$$
A_{1}\left(s_{0}, s_{1}, s_{2}\right)=b_{1} s_{1}^{0}+F_{1}(0,1,0) s_{0}^{0} s_{1}^{1} s_{2}^{0}+F_{1}(0,1,1) s_{0}^{0} s_{1}^{1} s_{2}^{1}+F_{1}(1,1,0) s_{0}^{1} s_{1}^{1} s_{2}^{0}
$$

where the coefficients $F_{1}(0,1,0), F_{1}(0,1,1), F_{1}(1,1,0)$ can be any elements of B satisfying the conditions (of type (12))

$$
F_{1}(0,1,0) \in\left\{b_{0}, b_{2}\right\}, \quad F_{1}(0,1,1)=b_{0}, \quad F_{1}(1,1,0)=b_{2}
$$

Note that generally, according to the condition $s_{0} \cdots s_{n}=0$, there exists at least one repro-function with respect to the sequence s_{0}, \ldots, s_{n}.

Theorem 1. Let $s_{0} \cdots s_{n}=0$, then the equation of the form

$$
x=A(x)
$$

is a reproductive equation and equivalent to the equation (7) if and only if A is a repro-function.

Proof. Denote the equation (7) by $g(x)=0$. Firstly, we prove the following fact
(p) Let $A(x)$ be determined by a certain equality of type (10) assuming only that $A_{0}\left(s_{0}, \ldots, s_{n}\right), \ldots, A_{n}\left(s, \ldots, s_{n}\right) \in B$. Then the implication $g(x)=0 \Rightarrow$ $x=A(x)$ holds if and only if for each coefficient $A_{k}\left(s_{0}, \ldots, s_{n}\right)$ an equality of the form (11) is satisfied, where $F_{k}\left(\sigma_{0}, \ldots, \sigma_{n}\right)$ can be any elements ${ }^{2}$ of B. The proof immediately follows from the following equivalences

$$
\begin{aligned}
(p) \Leftrightarrow & (\forall x \in B)\left[s_{0} x^{b_{0}}+\cdots+s_{n} x^{b_{n}}=0 \Rightarrow x=\right. \\
& A_{0}\left(s_{0}, \ldots, s_{n}\right) x^{b_{0}}+\cdots+ \\
& \left.+A_{n}\left(s_{0}, \ldots, s_{n}\right) x^{b_{n}}\right] \\
\Leftrightarrow & (\forall k \in\{0, \ldots, n\})\left(s_{k}=0 \Rightarrow A_{k}\left(s_{0}, \ldots, s_{n}\right)=b_{k}\right) \\
\Leftrightarrow & A_{k}\left(s_{0}, \ldots, s_{n}\right) \text { is determined by means of a certain equality (11), where } \\
& F_{k}\left(\sigma_{0}, \ldots, \sigma_{n}\right) \text { may be any elements of } B .
\end{aligned}
$$

Next we introduce the condition

$$
\begin{equation*}
(\forall x \in B) s_{0}(A(x))^{b_{0}}+\cdots+s_{n}(A(x))^{b_{n}}=0 \tag{q}
\end{equation*}
$$

Obviously the sentence " $x=A(x)$ is a reproductive equation, equivalent to the equation $f(x)=0$ " is logiccally equivalent to the conjuction $(p) \wedge(q)$. Accordingly, the remaining part of the proof reads:
$x=A(x)$ is a reproductive equation, equivalent to the equation $f(x)=0$

[^1]$\Leftrightarrow(p) \wedge(q)$
$\Leftrightarrow(\forall x \in B) s_{0}(A(x))^{b_{0}}+\cdots+s_{n}(A(x))^{b_{n}}=0$, and $A(x)$ is determined by means of some equalities of the form (10), (11), where $F_{k}\left(\delta_{0}, \ldots, \delta_{n}\right)$ are certain elements of B
$\Leftrightarrow(\forall x \in B) s_{0}\left(A_{0}\left(s_{0}, \ldots, s_{n}\right) x^{b_{0}}+\cdots+A_{n}\left(s_{0}, \ldots, s_{n}\right) x^{b_{n}}\right)^{b_{0}}+\cdots+$
$$
+s_{n}\left(A_{0}\left(s_{0}, \ldots, s_{n}\right) x^{b_{0}}+\cdots+A_{n}\left(s_{0}, \ldots, s_{n}\right) x^{b_{n}}\right)^{b_{n}}=0
$$
and $A_{k}\left(s_{0}, \ldots, s_{n}\right)$, with $k \in\{0, \ldots, n\}$, are determined by some equalities of the form (11).
$\Leftrightarrow(\forall i, k \in\{0, \ldots, n\}) s_{i} A_{k}^{b_{i}}\left(s_{0}, \ldots, s_{n}\right)=0$ and $A_{k}\left(s_{0}, \ldots, s_{n}\right)$, with $k \in$ $\{0, \ldots, n\}$, are determined by some equalities of the form (11). This part of the proof is based on the following general facts: If a_{0}, \ldots, a_{n}, b are any elements of B then:
$1^{\circ}\left(a_{0} x^{b_{0}}+\cdots+a_{n} x^{b_{n}}\right)^{b}=a_{0}^{b} x^{b_{0}}+\cdots+a_{n}^{b} x^{b_{n}} \quad($ for all $x \in B)$
$2^{\circ}(\forall x \in B) a_{0} x^{b_{0}}+\cdots+a_{n} x^{b_{n}}=0 \Leftrightarrow(\forall i \in\{0, \ldots, n\}) a_{i}=0$
$\Leftrightarrow(\forall i, k \in\{0, \ldots, n\}) s_{i} \cdot\left(\sum_{\sigma_{k} \neq 0, \sigma_{0} \cdots \sigma_{n}=0} F_{k}^{b_{i}}\left(\sigma_{0}, \ldots, \sigma_{n}\right) s_{0}^{\sigma_{0}} \cdots s_{n}^{\sigma_{n}}\right)=0$, where
$F_{k}\left(s_{0}, \ldots, s_{n}\right)$ are certain elements of B. We have used the equality of the form (11) and the identity $s_{i} \sigma_{k}^{b_{i}} s_{k}^{0}=0$
\[

$$
\begin{aligned}
\Leftrightarrow(\forall i, k \in\{0, \ldots, n\}) & \left(\sum_{\left(\sigma_{0}, \ldots, \sigma_{n}\right) \in S^{n+1}} \sigma_{i} s_{0}^{\sigma_{0}} \cdots s_{n}^{\sigma_{n}}\right. \\
& \cdot \sum_{\sigma_{k} \neq 0, \sigma_{0} \cdots \sigma_{n}=0} F_{k}^{b_{i}}\left(\sigma_{0}, \ldots, \sigma_{n}\right) s_{0}^{\sigma_{0}} \cdots s_{n}^{\sigma_{n}}=0
\end{aligned}
$$
\]

(For the identity $s_{i}=\sum_{\left(\sigma_{0}, \ldots, \sigma_{n}\right) \in S^{n+1}} \sigma_{i} s_{0}^{\sigma_{0}} \cdots s_{n}^{\sigma_{n}}$ holds).
$\Leftrightarrow(\forall i, k \in\{0, \ldots, n\}) \sum_{\sigma_{k} \neq 0, \sigma_{0} \cdots \sigma_{n}=0} \sigma_{i} F_{k}^{b_{i}}\left(\sigma_{0}, \ldots, \sigma_{n}\right) s_{0}^{\sigma_{0}} \cdots s_{n}^{\sigma_{n}}=0$
$\Leftrightarrow(\forall i, k \in\{0, \ldots, n\})\left(\forall \sigma_{0}, \ldots, \sigma_{n} \in S\right)\left(P \Rightarrow \sigma_{i} F_{k}^{b_{i}}\left(\sigma_{0}, \ldots, \sigma_{n}\right)=0\right)$
where the condition $\sigma_{k} \neq 0, \sigma_{0} \cdots \sigma_{n}=0$ is denoted by P.
From $F_{k} \in B$ it follows that $(\forall k)(\exists j) F_{k}=b_{j}$. Hence we conclude the equality $F_{k}=b_{\varphi(k)}$ where $\varphi:\{0, \ldots, n\} \rightarrow\{0, \ldots, n\}$ is a certain function ${ }^{3}$.
$\Leftrightarrow\left(\forall \sigma_{0}, \ldots, \sigma_{n} \in S\right)\left(\forall i, k \in\{0, \ldots, n\}\left(P \Rightarrow \sigma_{i} b_{\varphi(k)}^{b_{i}}=0\right)\right.$
$\Leftrightarrow\left(\forall \sigma_{0}, \ldots, \sigma_{n} \in S\right)\left(\forall k \in\{0, \ldots, n\}\left(P \Rightarrow \sigma_{\varphi(k)}=0\right)\right.$
For $x \neq y \Rightarrow x^{y}=0$.
$\Leftrightarrow\left(\forall \sigma_{0}, \ldots, \sigma_{n} \in S\right)(\forall k \in\{0, \ldots, n\})\left(P \Rightarrow b_{\varphi(k)} \in Z\left(\sigma_{0}, \ldots, \sigma_{n}\right)\right)$
Using definition (9).
$\Leftrightarrow\left(\forall \sigma_{0}, \ldots, \sigma_{n} \in S\right)(\forall k \in\{0, \ldots, n\})\left(P \Rightarrow F_{k} \in Z\left(\sigma_{0}, \ldots, \sigma_{n}\right)\right)$
$\Leftrightarrow A$ is a repro-function

[^2]The proof is complete.
From Theorem 1 immediately follows the following result on the reproductive solutions.

Theorem 2. If (7) is a possible equation then a formula

$$
x=A(p) \quad(p \text { is any element of } B)
$$

represents a general reproductive solution of the equation (7) if and only if the function A is a repro-function.

Example 1. Let $B=\{0,1,2\}$. Consider the x-equation

$$
s_{0} x^{0}+s_{1} x^{1}+s_{2} x^{2}=0 \quad\left(s_{i} \text { are given and } x \text { is unknown }\right)
$$

This equation is possible if and only if $s_{0} s_{1} s_{2}=0$. Any general reproductive solution has the following form

$$
\begin{equation*}
x=A_{0} p^{0}+A_{1} p^{1}+A_{2} p^{2} \tag{14}
\end{equation*}
$$

where A_{i} are defined by

$$
\begin{gathered}
A_{0}=(1 \text { or } 2) s_{0}^{1} s_{1}^{0} s_{2}^{0}+1 s_{0}^{1} s_{1}^{0} s_{2}^{1}+2 s_{0}^{1} s_{1}^{1} s_{2}^{0}, \quad A_{1}=1 s_{1}^{0}+(0 \text { or } 2) s_{0}^{0} s_{1}^{1} s_{2}^{0}+2 s_{0}^{1} s_{1}^{1} s_{2}^{0} \\
A_{2}=2 s_{2}^{0}+(0 \text { or } 1) s_{0}^{0} s_{1}^{0} s_{2}^{1}+1 s_{0}^{1} s_{1}^{0} s_{2}^{1}
\end{gathered}
$$

In these equalities a symbol of the form (p or q) denotes an element which may be p or q. Consequently there are exactly 8 formulas of the form (14).
3. Now we state an aplication of Theorems 1 and 2 . Let n be a given natural number and $B=S^{n}$. Then according to the definition (5) we have the following identity

$$
\left(x_{1}, \ldots, x_{n}\right)^{\left(i_{1}, \ldots, i_{n}\right)}=x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}
$$

In connection with it the equation of the type (7) may be written in the following form

$$
\begin{equation*}
\sum a_{i_{1} \ldots i_{n}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}=0 \tag{15}
\end{equation*}
$$

where $a_{i_{1} \ldots i_{n}} \in S$ are given, and $x_{j} \in S$ are unknown elements. In other words, (14) is the standard Boolean equation in x_{1}, \ldots, x_{n}. Theorems 1 and 2 can be directly applied to the equation (15); consequently one effectively finds all general reproductive solutions of it.

REFERENCES

[1] M. Božić, A note on reproductive solutions, Publ. Inst. Math. (Beograd) 19 (33) (1975), 33-35.
[2] L. Löwenheim, Über das Auflösungs problem im logischen Klassen-kalkul. Sitzungsber, Berl. Math. Geselschaft 7 (1980), 89-94.
[3] L. Löwenheim, Über die Auflössung von Gleichungen im logischen Gebietenkalkul. Math. Ann. 68 (1910), 169-207.
[4] S. B. Prešić, Une classe d'équations matricielles et l'équation functionnele $f^{2}=f$, Publ. Inst. Math. (Beograd) 8 (22) (1968), 143-148.
[5] S. B. Prešić, Une méthode de resolution des équations dont toutes les solutions appartiennent à un ensemble fini, C.R. Acad. Sci. Paris Ser. A 272 (1971), 654-657.
[6] S. B. Prešić, Ein Satz über reproductive Lösungen, Publ. Inst. Math. Belgrade 14 (28) (1973), 133-136.
[7] S. Rudeanu, Boolean Functions and Equations, North-Holland, Amsterdam \& Elsevier, New York, 1974.
[8] S. Rudeanu, On reproductive solutions of arbitrary equations, Publ. Inst. Math. (Beograd) 24 (38) (1978), 143-147.
[9] D. Banković, On general and reproductive solutions of arbitrary equations, Publ. Inst. Math. (Beograd) 26 (40), (1979), 31-33.

Matematički fakultet
(Received 1210 1987)
Studentski trg 16,
11000 Beograd
Jugoslavija

[^0]: ${ }^{1}$ As a matter of fact, A is a function of the type $A: S^{n+1} \times B \rightarrow B$.

[^1]: ${ }^{2}$ Thus condition (8) is not assumed.

[^2]: ${ }^{3} \varphi$ also depends on $\sigma_{0}, \ldots, \sigma_{n}$.

