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ALL REPRODUCTIVE SOLUTIONS OF FINITE EQUATIONS

Slavi�sa B. Pre�si�c

Summary. An equation, the solution set of which is a subset of a given �nite set, is
called a �nite equation. Applying some kind of algebraic structure we e�ectively determine all
reproductive solutions of such equations (Theorem 1 and Theorem 2).

1. Let E be a given non-empty set and f : E ! E a given function. An
x-equation

(1) f(x) = x

is called reproductive [4] if the function f satis�es the identity

(2) f(f(x)) = f(x)

All solutions of a reproductive equation can be found in a trivial way. Namely, the
formula

(3) x = f(p) (p is an arbitrary element of E)

determines all solution of (1) provided this equation is a reproductive one. The
formula is an example of the so-called general reproductive solutions formula ([2],
[3], [7]).

Next, any x-equation

(4) eq(x) (x is an unknown element of E; eq is a given

unary relation of E)

which has at least one solution is equivalent to a reproductive equation [4].

Accordingly, to solve a given x-equation (4) it suÆces to �nd any reproductive
equation equivalent to (1). In this paper we are concerned with �nding all such
reproductive equations in case of a �nite equation.
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2. Let B = f�0; �1; . . . ; �ng be a given set of n+ 1 elements and S = f0; 1g.
De�ne the operation xy by

(5) xy =

�
1; if x = y

0; otherwise
(x; y 2 B [ S)

The standard Boolean operations + and � ("or\ and "and\) are described by
the following tables

+ 0 1
0 0 1
1 1 1

� 0 1
0 0 0
1 0 1

Extend these operations to partial operations of the set B [S in the following way

(6) x+0 = x; 0 + x = x; x � 0 = 0; 0 � x = 0; x � 1 = x; 1 � x = x (x 2 B [ S)

We consider the following x-equation

(7) s0 � x
b0 + s1 � x

b1 + � � �+ sn � x
bn = 0

where si 2 f0; 1g are given elements and x 2 B is unknown. Obviously the equation
(7) is possible i� the condition

(8) s0 � s1 � � � sn = 0

holds.

In the sequel, assuming the condition (8), we are going to determine all re-
productive solutions of the equation (7).

First we introduce the following de�nition.

Let (�0; �1; . . . ; �n) 2 Sn+1 be any element. Then the set Z(�0; . . . ; �n)
("the zero-set of (�0; . . . ; �n)\) is de�ned as folows

(9) bi 2 Z(�0; . . . ; �n), �i = 0 (i = 0; 1; . . . ; n)

For instance, if n = 3 we have

Z(1; 0; 1; 0) = fb1b3g; Z(1; 1; 1; 1) = ;; Z(0; 0; 0; 0) = fb0; b1; b2; b3g

Let now s0; . . . ; sn be any elements of S satisfying the condition (8). With respect
to the sequence s0; . . . ; sn we de�ne the so-called repro-function1 A : B ! B.
This is any function de�ned by a certain formula of the form

(10) A(x) = A0(s0; . . . ; sn)x
b0 � � �+An(s0; . . . ; sn)x

bn

where each coeÆcient Ak(s0; . . . ; sn) is determined by some equality of the form

(11) Ak(s0; . . . ; sn) = bks
0
k +

X
�k 6=0; �0����n=0

Fk(�0; . . . ; �n)s
�0
0 � � � s�nn

1As a matter of fact, A is a function of the type A : Sn+1 �B ! B.
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assuming that coeÆcients Fk(�0; . . . ; �n) 2 B satisfy the condition

(12) Fk(�0; . . . ; �n) 2 Z(�0; . . . ; �n)

For instance, if n = 2, k = 1 the equality (11) reads

A1(s0; s1; s2) = b1s
0
1 + F1(0; 1; 0)s

0
0s

1
1s

0
2 + F1(0; 1; 1)s

0
0s

1
1s

1
2 + F1(1; 1; 0)s

1
0s

1
1s

0
2;

where the coeÆcients F1(0; 1; 0), F1(0; 1; 1), F1(1; 1; 0) can be any elements of B
satisfying the conditions (of type (12))

F1(0; 1; 0) 2 fb0; b2g; F1(0; 1; 1) = b0; F1(1; 1; 0) = b2

Note that generally, according to the condition s0 � � � sn = 0, there exists at
least one repro-function with respect to the sequence s0; . . . ; sn.

Theorem 1. Let s0 � � � sn = 0, then the equation of the form

x = A(x)

is a reproductive equation and equivalent to the equation (7) if and only if A is a

repro-function.

Proof. Denote the equation (7) by g(x) = 0. Firstly, we prove the following
fact

(p) Let A(x) be determined by a certain equality of type (10) assuming only that
A0(s0; . . . ; sn), . . . , An(s; . . . ; sn) 2 B. Then the implication g(x) = 0 )
x = A(x) holds if and only if for each coeÆcient Ak(s0; . . . ; sn) an equality
of the form (11) is satis�ed, where Fk(�0; . . . ; �n) can be any elements2 of B.

The proof immediately follows from the following equivalences

(p), (8x 2 B)[s0x
b0 + � � �+ snx

bn = 0) x = A0(s0; . . . ; sn)x
b0 + � � �+

+An(s0; . . . ; sn)x
bn ]

, (8k 2 f0; . . . ; ng)(sk = 0) Ak(s0; . . . ; sn) = bk)

, Ak(s0; . . . ; sn) is determined by means of a certain equality (11), where

Fk(�0; . . . ; �n) may be any elements of B.

Next we introduce the condition

(q) (8x 2 B)s0(A(x))
b0 + � � �+ sn(A(x))

bn = 0:

Obviously the sentence "x = A(x) is a reproductive equation, equivalent to the

equation f(x) = 0\ is logiccally equivalent to the conjuction (p)^ (q). Accordingly,
the remaining part of the proof reads:

x = A(x) is a reproductive equation, equivalent to the equation f(x) = 0

2Thus condition (8) is not assumed.
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, (p) ^ (q)

, (8x 2 B)s0(A(x))
b0 + � � �+sn(A(x))

bn = 0, and A(x) is determined by means
of some equalities of the form (10), (11), where Fk(Æ0; . . . ; Æn) are certain
elements of B

, (8x 2 B) s0(A0(s0; . . . ; sn)x
b0 + � � �+An(s0; . . . ; sn)x

bn)b0 + � � �+

+sn(A0(s0; . . . ; sn)x
b0 + � � �+An(s0; . . . ; sn)x

bn)bn = 0

and Ak(s0; . . . ; sn), with k 2 f0; . . . ; ng, are determined by some equalities
of the form (11).

, (8i; k 2 f0; . . . ; ng) siA
bi
k (s0; . . . ; sn) = 0 and Ak(s0; . . . ; sn), with k 2

f0; . . . ; ng, are determined by some equalities of the form (11). This part
of the proof is based on the following general facts: If a0; . . . ; an, b are any
elements of B then:

1Æ (a0x
b0 + � � �+ anx

bn)b = ab0x
b0 + � � �+ abnx

bn (for all x 2 B)

2Æ (8x 2 B) a0x
b0 + � � �+ anx

bn = 0, (8i 2 f0; . . . ; ng)ai = 0

, (8i; k 2 f0; . . . ; ng) si � (
X

�k 6=0; �0����n=0

F bi
k (�0; . . . ; �n)s

�0
0 � � � s�nn ) = 0, where

Fk(s0; . . . ; sn) are certain elements of B. We have used the equality of the

form (11) and the identity si�
bi
k s

0
k = 0

, (8i; k 2 f0; . . . ; ng) (
X

(�0;... ;�n)2Sn+1

�is
�0
0 � � � s�nn

�
X

�k 6=0; �0����n=0

F bi
k (�0; . . . ; �n)s

�0
0 � � � s�nn = 0

(For the identity si =
X

(�0;... ;�n)2Sn+1

�is
�0
0 � � � s�nn holds).

, (8i; k 2 f0; . . . ; ng)
X

�k 6=0; �0����n=0

�iF
bi
k (�0; . . . ; �n)s

�0
0 � � � s�nn = 0

, (8i; k 2 f0; . . . ; ng) (8�0; . . . ; �n 2 S)(P ) �iF
bi
k (�0; . . . ; �n) = 0)

where the condition �k 6= 0, �0 � � ��n = 0 is denoted by P .

From Fk 2 B it follows that (8k)(9j)Fk = bj . Hence we conclude the equality
Fk = b'(k) where ' : f0; . . . ; ng ! f0; . . . ; ng is a certain function3.

, (8�0; . . . ; �n 2 S)(8i; k 2 f0; . . . ; ng(P ) �ib
bi
'(k) = 0)

, (8�0; . . . ; �n 2 S)(8k 2 f0; . . . ; ng(P ) �'(k) = 0)

For x 6= y ) xy = 0.

, (8�0; . . . ; �n 2 S)(8k 2 f0; . . . ; ng)(P ) b'(k) 2 Z(�0; . . . ; �n))

Using de�nition (9).

, (8�0; . . . ; �n 2 S)(8k 2 f0; . . . ; ng)(P ) Fk 2 Z(�0; . . . ; �n))

, A is a repro-function

3' also depends on �0; . . . ; �n.
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The proof is complete.

From Theorem 1 immediately follows the following result on the reproductive
solutions.

Theorem 2. If (7) is a possible equation then a formula

x = A(p) (p is any element of B)

represents a general reproductive solution of the equation (7) if and only if the

function A is a repro-function.

Example 1. Let B = f0; 1; 2g. Consider the x-equation

s0x
0 + s1x

1 + s2x
2 = 0 (si are given and x is unknown)

This equation is possible if and only if s0s1s2 = 0. Any general reproductive
solution has the following form

(14) x = A0p
0 +A1p

1 +A2p
2

where Ai are de�ned by

A0 = (1 or 2)s10s
0
1s

0
2 + 1s10s

0
1s

1
2 + 2s10s

1
1s

0
2; A1 = 1s01 + (0 or 2)s00s

1
1s

0
2 + 2s10s

1
1s

0
2

A2 = 2s02 + (0 or 1)s00s
0
1s

1
2 + 1s10s

0
1s

1
2

In these equalities a symbol of the form (p or q) denotes an element which may be
p or q. Consequently there are exactly 8 formulas of the form (14).

3. Now we state an aplication of Theorems 1 and 2. Let n be a given natural
number and B = Sn. Then according to the de�nition (5) we have the following
identity

(x1; . . . ; xn)
(i1;... ;in) = xi11 � � �x

in
n

In connection with it the equation of the type (7) may be written in the following
form

(15)
X

ai1...inx
i1
1 � � �x

in
n = 0

where ai1...in 2 S are given, and xj 2 S are unknown elements. In other words,
(14) is the standard Boolean equation in x1; . . . ; xn. Theorems 1 and 2 can be
directly applied to the equation (15); consequently one e�ectively �nds all general
reproductive solutions of it.
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