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A SIMPLE ALGORITHM FOR PROVING

A CLASS OF INEQUALITIES

Slavǐsa B. Prešić

Let E(x1, . . . , xn) be an expression of the form

A1|a11x1 + · · ·+ a1nxn + b1|+ · · ·+Am|am1x1 + · · ·+ am1xn + bm|
+ B1x1 + · · ·+ Bnxn + C,

where Ai, aij , bi,Bj , C are any real numbers. In this paper we introduce an
algorithm Elim, by which one can establish whether for all x1, . . . , xn ∈ R the
inequality E(x1, . . . , xn)ρ0 holds, where ρ can be > or ≥. Such an example
is the following inequality

|x1|+ |x2|+ |x3| − |x1 + x2| − |x1 + x3| − |x2 + x3|+ |x1 + x2 + x3| ≥ 0,

which originated from H. Hornich [2]. All results can be transfered to any
ordered field.

Let E(x) be an expression of the form

(1) A1|x− a1|+ · · ·+ Ak|x− ak|+ Bx + C,

where Ai, ai, B,C are any real numbers. The so-called determiners of expression
E(x) are

−∞, a1, . . . , ak, +∞.

Temporarily suppose that this chain of inequalities

(∗1) a1 ≤ a2 ≤ · · · ≤ ak

holds. Then the expression E(x) has the following property:

(2) In each interval (−∞, a1], [a1, a2], . . . , [ak−1, ak], [ak, +∞) E(x) reduces to
a certain linear expression like ax + b, with some real numbers a, b.
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These linear expressions will be denoted by

Lin(−∞,a1](x), Lin[a1,a2](x), . . . ,Lin[ak−1,ak](x), Lin[ak,+∞)(x).

For instance, if E(x) = |x − 1| − 5|x − 2| + 3x − 2, then E−determiners are
−∞, 1, 2, +∞ and the corresponding linear expressions are

Lin(−∞,1](x) = 7x− 11, Lin[1,2](x) = 9x− 13, Lin[2,+∞)(x) = −x + 7.

Indeed, if x ≤ 1 then |x− 1| = 1−x, |x− 2| = 2−x therefore E(x) = 1−x− 5(2−
x) + 3x − 2, i.e. Lin(−∞,1](x) = 7x − 11. Similarly one can derive the equalities
Lin[1,2](x) = 9x − 13, Lin[2,+∞)(x) = −x + 7. In general, one can derive these
equalities

(∗2) Lin(−∞,a1](x) = x(B −A1 − · · · −Ak) + (C + A1a1 + · · ·+ Akak),

Lin[a1,a2](x) = x(B + A1 −A2 − · · · −Ak)
+ (C −A1a1 + A2a2 + · · ·+ Akak),

Lin[a2,a3](x) = x(B + A1 + A2 −A3a3 − · · · −Ak)
+ (C −A1a1 −A2a2 + A3a3 + · · ·+ Akak),

...
Lin[ak−1,ak](x) = x(B + A1 + A2 + · · ·+ Ak−1 −Ak)

+ C −A1a1 −A2a2 − · · · −Ak−1ak−1 + Akak),
Lin[ak,+∞)(x) = x(B + A1 + A2 + · · ·+ Ak)

+ (C −A1a1 −A2a2 − · · · −Akak).

Expressions (∗2) satisfy the following equalities

(3) Lin(−∞,a1](a1) = Lin[a1,a2](a1), Lin[a1,a2](a2) = Lin[a2,a3](a2),

. . . , Lin[ak−1,ak](ak) = Lin[ak,∞)(ak).

Related to (3) we shall also say: neighbouring linear expressions are connected.
The conclusion (3) is based on the assumption (∗1). In general case instead

of (∗1) we have some chain of inequalities of the form

(∗3) a′1 ≤ a′2 ≤ · · · ≤ a′k,

where a′1a
′
2 · · · a′k is certain permutation of a1a2 · · · ak. Notice that if we each

ai replace with a′i then from (2), (3) we obtain new true assertions. Also, by such
substitution from formulas (∗2) we obtain new valid formulas. It is interesting that
in the formulas

(∗4) Lin(−∞,a′1](x) = x(B −A1 − · · · −Ak) + (C + A1a1 + · · ·+ Akak),

Lin[a′k,+∞)(x) = x(B + A1 + A2 + · · ·+ Ak) + (C −A1a1 −A2a2 − · · · −Akak),
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the right-hand sides do not depend on the permutation a′1a
′
2 · · · a′k. Next, we

introduce the following notations:

(4)

E(+∞) > 0 stands for : (∃x0)(∀x ≥ x0) E(x) > 0 i.e. starting with some
x0 for all x ≥ x0 the inequality E(x) > 0 holds,

E(+∞) ≥ 0 stands for : (∃x0)(∀x ≥ x0) E(x) ≥ 0,

E(−∞) > 0 stands for : (∃x0)(∀x ≤ x0) E(x) > 0,

E(−∞) ≥ 0 stands for : (∃x0)(∀x ≤ x0) E(x) ≥ 0.

Bearing in mind (∗4) one can substitute definitions (4) by the following:

(5)

E(+∞) > 0 stands for : A1 + · · ·+ Ak + B > 0
∨(A1 + · · ·+ Ak + B = 0, C −A1a1 − · · · −Akak > 0),

E(+∞) ≥ 0 stands for : A1 + · · ·+ Ak + B > 0
∨(A1 + · · ·+ Ak + B = 0, C −A1a1 − · · · −Akak ≥ 0),

E(−∞) > 0 stands for : A1 + · · ·+ Ak −B > 0
∨(A1 + · · ·+ Ak −B = 0, C + A1a1 + · · ·+ Akak > 0),

E(−∞) ≥ 0 stands for : A1 + · · ·+ Ak −B > 0
∨(A1 + · · ·+ Ak −B = 0, C + A1a1 + · · ·+ Akak ≥ 0).

Each Lin−function of E(x), being linear, has the following property:

(6) Lin has a fixed sign σ in its interval if and only if it has this sign σ on the
ends of the interval.

For instance:

Lin[a′1,a′2](x) > 0 for all x ∈ [a′1, a
′
2] if and only if E(a′1) > 0, E(a′2) > 0.

Lemma 1. Let E(x) be an expression of the form (1). Then the following equiva-
lences hold:

(∀x ∈ R)E(x) > 0 ⇔ E(−∞) > 0, E(a1) > 0, . . . , E(ak) > 0, E(+∞) > 0,

(∀x ∈ R)E(x) ≥ 0 ⇔ E(−∞) ≥ 0, E(a1) ≥ 0, . . . , E(ak) ≥ 0, E(+∞) ≥ 0.

Proof. We shall prove the first equivalence; the second equivalence can be proved
in a similar way. The proof of 〈if〉 part is immediate. Indeed, if the inequality
E(x) > 0 holds for all x ∈ R then it holds in “points” a1, . . . , ak. Bearing in mind
(∗4) and (5) we see that the conditions E(−∞) > 0, E(+∞) > 0 are satisfied also.

To prove 〈only if〉 part suppose that conditions

E(−∞) > 0, E(a1) > 0, . . . , E(ak) > 0, E(+∞) > 0

hold. These conditions can be expressed in this way

E(−∞) > 0, E(a′1) > 0, . . . , E(a′k) > 0, E(+∞) > 0.
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Let x ∈ R be any real number. If x ∈ [a′i, a
′
i+1] (1 ≤ i ≤ k − 1), then by (6)

it follows that E(x) > 0 holds. Next, if E(−∞) > 0 then from the facts:

1◦ Starting with some x0 for all x ≤ x0 the inequality E(x) > 0 holds,

2◦ E(x) reduces to linear expression for all x ≤ a′1,

we derive that E(x) > 0 for all x ≤ a′1. In a similar way, from the assumptions
E(+∞) > 0 and E(ak) > 0 we conclude that E(x) > 0 for all x ≥ ak.

According to Lemma 1, if we want to prove certain inequality E(x) > 0 (for
all x ∈ R), then it suffices to prove the following conjunction

E(−∞) > 0 ∧ E(a1) > 0 ∧ · · · ∧ E(ak) > 0 ∧ E(+∞) > 0

of inequalities. A similar fact holds for inequality E(x) ≥ 0. Notice that on the
left-hand side of both equivalences in Lemma 1 stands one formula of the form
(∀x ∈ R)E(x)ρ0, where ρ is > or ≥, while on the right-hand side stands the
formula in which quantifier (∀x ∈ R) does not appear. In other words, Lemma
1 is an assertion of elimination of the quantifier (∀x ∈ R). The right-hand sides
are conjunctions, whose components we shall call successors of the formula on the
left-hand side, i.e. of formula (∀x ∈ R)E(x)ρ0. Also, this formula shall be called
parent (of its successors).

Mainly based on Lemma 1 and Lemma 2 below we shall gradually define an
algorithm Elim. Briefly said, Elim “calculates” the logical value of given formula,
the result can be either > (“true”) or ⊥ (“false”). In the sequel for Elim we shall
use a functional denotation. Namely, if φ is a given formula, then by Elim(φ) is
denoted its logical value (obtained by Elim−algorithm). Elim shall be defined by
three definition-equalities (El1), (El2), (El3) below.

Elim deals with some formulas, belonging to the so called Elim–class. For in-
stance, formulas (∀x ∈ R)E(x) > 0, (∀x ∈ R)E(x) ≥ 0 from Lemma 1 are elements
of Elim–class. Let E(x1, . . . , xn) be any expression with variables x1, . . . , xn only.
Elim–class is determined by

Definition 1. A formula (∀x1, . . . , xn ∈ R)E(x1, . . . , xn)ρ0), where ρ is > or ≥
belongs to Elim–class if and only Elim−algorithm can calculate

Elim
(
(∀x1, . . . , xn ∈ R)E(x1, . . . , xn)ρ0

)
,

i.e. by Elim one can prove or disprove that the inequality E(x1, x2, . . . , xn)ρ0 holds
for any real numbers x1, . . . , xn.

According to Lemma 1 we first introduce the following definition-equality, which is
a particular case of (El1) below.

(El′1) Elim
(
(∀x ∈ R)E(x)ρ0

)

= Elim
(
E(−∞)ρ0

) ∧ Elim
(
E(a1)ρ0

)

∧ · · · ∧ Elim(E(ak)ρ0) ∧ Elim(E(+∞)ρ0) (ρ is > or ≥).
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The meaning of (El′1) is the following. Suppose that we now the v0, v1, . . . , vk, vk+1

which are the logical values for

Elim
(
E(−∞)ρ0

)
, Elim

(
E(a1)ρ0

)
, . . . , Elim

(
E(ak)ρ0

)
, Elim

(
E(+∞)ρ0

)

respectively. Then the value of Elim
(
(∀x ∈ R)E(x)ρ0

)
is v0 ∧ v1 ∧ · · · ∧ vk ∧ vk+1,

where the use of truth value table for logical connective ∧ is supposed. Related to
(El′1) we can also say in this way: calculation of Elim(φ) for a given formula φ is
transfered to calculation of Elim-values for its successors.

An equality AρB (ρ is > or ≥), where A,B are some given real numbers,
will be called a constant-inequality. For instance, 3 > 5 is such an inequality. Every
constant-inequality is either true or false, i.e. has exactly one logical value > or ⊥.
The next compoment of Elim−algorithm is the following definition-equality:

(El2) Elim(AρB) = v (ρ is > or ≥) A, B are some real numbers and v is
the logical value of the inequality AρB.

For instance, Elim(3 > 5) is ⊥, Elim(5 ≥ 3) is >. Next, we introduce the
folowing components of Elim−algorithm:

(El3) Elim(φ ∧ ψ) = Elim(φ) ∧ Elim(ψ), Elim(φ ∨ ψ) = Elim(φ) ∨ Elim(ψ),

where on the rigt-hand sides are supposed the corresponding truth value tables for
∧ and ∨.

To illustrate the given definition-equalities we state one simple example. Let
E(x) be expression 2|x|+|x−1|+3x+1. This is an expression of type (1). The −∞
is an E−determiner. By (5) for the inequality E(−∞) ≥ 0 we have the following
logical formula

2 + 1− 3 > 0 ∨ (2 + 1− 3 = 0 ∧ 2 ≥ 0)

by which we can easily calculate the logical value of E(−∞) ≥ 0. Employing
Elim−algoritm we have the following chain of equalities

(∗5) Elim
(
E(−∞) ≥ 0

)

= Elim
(
2 + 1− 3 > 0 ∨ (2 + 1− 3 = 0 ∧ 2 ≥ 0)

)
(by (5))

= Elim(2 + 1− 3 > 0) ∨ Elim
(
(2 + 1− 3 = 0 ∧ 2 ≥ 0)

)
(by (El3))

= Elim(2 + 1− 3 > 0) ∨ (
Elim(2 + 1− 3 = 0) ∧ Elim(2 ≥ 0)

)
(by (El3))

= ⊥ ∨ (> ∧ >) (by (El2))
= > (by truth value tables for ∧ and ∨).

Now we shall see how Elim works in two examples.

Example 1. Prove or disprove the given inequality (for any x ∈ R):

(i) E(x) ≥ 0, where E(x) = 2|x|+ |x− 1|+ 3x + 1.

(ii) E(x) > 0, where E(x) = 1 + x− |x|.
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Solution. (i) The E(x) is an expression of type (1). The E−determiners are
−∞, 0, 1,+∞. By (El′1) (ρ is ≥) we have the following equality:

(∗) Elim
(
(∀x ∈ R) (2|x|+ |x− 1|+ 3x + 1 ≥ 0)

)

= Elim(E(−∞) ≥ 0) ∧ Elim(E(0) ≥ 0) ∧ Elim(E(1) ≥ 0) ∧ Elim(E(∞) ≥ 0).

Now we calculate the ∧−components. For the first one (see (∗5)) we already
have the result Elim

(
E(−∞) ≥ 0) = >. For the second and third one we have

equivalities

Elim
(
E(0) ≥ 0

)
= Elim(2 ≥ 0) = >, Elim

(
E(1) ≥ 0

)
= Elim(6 ≥ 0) = >

respectively. For the fourth one we have the following chain of equalities:

Elim(E(∞) ≥ 0) = Elim
(
2 + 1 + 3 > 0 ∨ (2 + 1 + 3 = 0 ∧ 0 ≥ 0)

)

= Elim(2 + 1 + 3 > 0) ∨ Elim
(
2 + 1 + 3 = 0 ∧ 0 ≥ 0

)

= Elim(2 + 1 + 3 > 0) ∨ (
Elim(2 + 1 + 3 = 0) ∧ Elim(0 ≥ 0)

)

= > ∨ (⊥ ∧>)
= >.

Notice that we can shorten this calculation. Namely, when we have calculated
Elim(2 + 1 + 3 > 0) and obtained >, then we could conclude that the total result
is >. After these calculations for formula (∗) we have the final result >. In other
words inequality (i) is proved.

(ii) The E(x) is an expression of type (1). The E−determiners are −∞, 0, +∞.
By (El′1) (ρ is >) we have the following equality:

(∗∗) Elim
(
(∀x ∈ R) (1 + x− |x| > 0)

)

= Elim(E(−∞) > 0) ∧ Elim(E(0) > 0) ∧ Elim(E(+∞) > 0).

Now we calculate the first ∧−component. We have the following calculation:

Elim(E(−∞) > 0) = Elim(−1− 1 > 0 ∨ (−1− 1 = 0 ∧ 1 > 0) = ⊥ ∨ (⊥ ∧>) = ⊥.

Since the first ∧−component is ⊥ we do not need to calculate other ∧−compo-
nents, the total result for (∗∗) is ⊥, i.e. the inequality (ii) is not true for all x ∈ R.

According to the solutions, stated in Example 1, we see that if E(x) is an
expression of the form (1) then Elim−algorithm is able to prove or disprove the
inequality E(x)ρ0 (ρ is > or ≥) for any real number x. In other words formula
(∀x ∈ R)E(x)ρ0 belongs to Elim–class.

Let now E(x) be an expression of the form (1), such that a1, . . . , ak and
C can be expressions containing some new variables, say y1, . . . , yn. However, we
suppose that A1, . . . , Ak and B are some real numbers. Let E(x) be also denoted by
E(x, y1, . . . , yn). Suppose that we want to prove that inequality E(x, y1, · · · , yn)ρ0
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(ρ is > or ≥) holds for any real numbers x, y1, . . . , yn. We can find x−successors
of E(x, y1, . . . , yn), which are

(∗) E(−∞, y1, . . . , yn)ρ0, E(a1, y1, . . . , yn)ρ0, . . . ,

E(ak, y1, . . . , yn)ρ0, E(∞, y1, . . . , yn)ρ0.

Obviously the left-hand sides of the successors for a1, . . . ak are some expres-
sions, consequently these successors are some ρ−inequalitites. But the successors
for −∞ and +∞ are defined by (5) which yuilds a logical formula. For instance,
for E(+∞, y1, . . . , yn) > 0 we have the logical formula of the form

A1 + · · ·+ Ak + B > 0 ∨ (A1 + · · ·+ Ak + B = 0, C −A1a1 − · · · −Akak > 0).

Let S be denotation for the summ A1 + · · · + Ak + B. Then, if S < 0 then
E(+∞, y1, . . . , yn) > 0 reduces to ⊥, if S > 0 reduces to >, and if S = 0 then
E(+∞, y1, . . . , yn) > 0 reduces to the inequality C − A1a1 − · · · − Akak > 0 con-
taining variables y1, . . . , yn only. Notice that this inequality is with > −sign, just
as the successor E(+∞, y1, . . . , yn) > 0.

Similarly, any successor for −∞ or +∞ reduces to ⊥, or to > or to some
inequality of the form L(y1, . . . , yn)ρ0, where L is some expression with variables
y1, . . . , yn only. That fact is essential, we particularly express it by

(7) In virtue of the supposition that A1, . . . , Ak, B are some real numbers the
successors E(−∞, y1, . . . , yn)ρ0, E(+∞, y1, . . . , yn)ρ0 reduce to ⊥, or to > or
to some inequality of the form L(y1, . . . , yn)ρ0, where L is some expression
with variables y1, . . . , yn only.
Now concerning the mentioned problem we put the following question: whe-

ther the problem to prove inequality E(x, y1, . . . , yn)ρ0 for all x, y1, . . . , yn ∈ R
can be reduced to the problem to prove that all successor-inequalities hold for any
y1, . . . , yn ∈ R? The answer is positive. Related to this we have the following
assertion:

Lemma 2. Let E(x, y1, . . . , yn) be an expression of the form (1) with respect to
x, allowing that ai, C may be expressions containing the variables y1, . . . , yn only,
while Ai, B must be some real numbers. Then the following equivalence holds:

(i) (∀y1, . . . , yn ∈ R)(∀x ∈ R)E(x, y1, . . . , yn)ρ0

⇔ (∀y1, . . . , yn ∈ R)E(−∞, y1, . . . , yn)ρ0,

(∀y1, . . . , yn ∈ R) E(a1, y1, . . . , yn)ρ0,

. . . ,

(∀y1, . . . , yn ∈ R)E(ak, y1, . . . , yn)ρ0,

(∀y1, . . . , yn ∈ R)E(∞, y1, . . . , yn)ρ0.

Proof. Suppose that ρ is >. Let variables y1, . . . , yn have any values v1, . . . , vn

from R. Consider the formula (∀x ∈ R)E(x, v1, . . . , vn).
The expression E(x, v1, . . . , vn) has the form (1), the corresponding sub-

expressions ai, Aj , B, C are certain real numbers. Applying Lemma 1 to that ex-
pression we obtain the following equivalence:
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(∀x ∈ R)E(x, v1, . . . , vn) > 0

⇔ E(−∞, v1, . . . , vn) > 0, E(a1, v1, . . . , vn) > 0,

. . . , E(ak, v1, . . . , vn) > 0, E(+∞, v1, . . . , vn) > 0

Temporarily denote this equivalence by L(v1, . . . , vn) ⇔ R(v1, . . . , vn). Hav-
ing in mind that v1, . . . , vn may be any real numbers we have the following conclu-
sion

(∀v1, . . . , vn ∈ R)
(
L(v1, . . . , vn) ⇔ R(v1, . . . , vn)

)
.

From this formula immediately follows the following equivalence

(∗) (∀v1, . . . , vn ∈ R)L(v1, . . . , vn) ⇔ (∀v1, . . . , vn ∈ R)R(v1, . . . , vn).

We have used the following general property of quantifier ∀

(∀ →
V )(P (

→
V ) ⇔ Q(

→
V )) ⇒ (∀ →

V )P (
→
V ) ⇔ (∀ →

V )Q(
→
V ),

where
→
V stands for v1, . . . , vn, and P,Q are some logical formulas.
Using yi instead of vi from (∗) we obtain

(∗′) (∀y1, . . . , yn ∈ R)L(y1, . . . , yn) ⇔ (∀y1, . . . , yn ∈ R)R(y1, . . . , yn).

R(y1, . . . , yn) is the conjunction

E(−∞, y1, . . . , yn) > 0, E(a1, y1, . . . , yn) > 0,

. . . , E(ak, y1, . . . , yn) > 0, E(+∞, y1, . . . , yn) > 0.

Using the general connection between the quantifier ∀ and ∧, expressed by
the equivalence (∀x)(P ∧Q) ⇔ (∀x)P ∧ (∀x)Q we get the following equivalence

(∗′′) (∀y1, . . . , yn ∈ R)R(y1, . . . , yn)
⇔ (∀y1, . . . , yn ∈ R)E(−∞, y1, . . . , yn) > 0,

(∀y1, . . . , yn ∈ R)E(a1, y1, . . . , yn) > 0,

. . . , (∀y1, . . . , yn ∈ R)E(ak, y1, . . . , yn) > 0,

(∀y1, . . . , yn ∈ R)E(+∞, y1, . . . , yn) > 0.

From (∗′) and (∗′′) we derive the following equivalence

(∀y1, . . . , yn ∈ R)L(y1, . . . , yn)
⇔ (∀y1, . . . , yn ∈ R)E(−∞, y1, . . . , yn) > 0,

(∀y1, . . . , yn ∈ R)E(a1, y1, . . . , yn) > 0,

. . . , (∀y1, . . . , yn ∈ R)E(ak, y1, . . . , yn) > 0,

(∀y1, . . . , yn ∈ R)E(∞, y1, . . . , yn) > 0.

As a matter of fact, in case ρ is > we have obtained the equivalence (i). In
a similar way one can prove (i) in case ρ is ≥.

In connection with Lemma 2 for Elim we have the last definition-equality:
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(El1) Elim
(
(∀y1, . . . , yn ∈ R)(∀x ∈ R)E(x, y1, . . . , yn)ρ0

)

= Elim
(
(∀y1, . . . , yn ∈ R)E(−∞, y1, . . . , yn)ρ0

)
,

Elim
(
(∀y1, . . . , yn ∈ R) E(a1, y1, . . . , yn)ρ0

)
,

. . . ,

Elim
(
(∀y1, . . . , yn ∈ R)E(ak, y1, . . . , yn)ρ0

)
,

Elim
(
(∀y1, . . . , yn ∈ R)E(∞, y1, . . . , yn)ρ0

)
.

Notice that (El1) is techically a bit complex. Therefore when we use them
we shall make two steps:

(8) 1◦ For inequality E(x, y1, . . . , yn)ρ0 we make x−succerors, which are:

E(−∞, y1, . . . , yn)ρ0, E(a1, y1, . . . , yn)ρ0, . . . ,

E(ak, y1, . . . , yn)ρ0, E(+∞, y1, . . . , yn)ρ0.

2◦ After that we apply (El1).

As we have already said, the Elim−algorithm is defined by equalities (El1),
(El2), (El3). By convention, each separate use of these equalities will be called
a step of Elim−algortihm. During this algorithm at each step appears certain
conjunction of the form

Elim(S1) ∧ Elim(S2) ∧ · · · ∧ Elim(Sr) (r ≥ 1).

It can happen that some Elim(Si) is equal to ⊥. In such a case Elim−algo-
rithm halts, and the total Elim−result is ⊥.

Now we state some examples in which Elim−algoritm is applied.

Example 2. Prove the inequality

(∗1) |a|+ |b| − |a + b| ≥ 0,

where a, b are any real numbers.
Proof. In other words we should prove the formula1

(∀b ∈ R)(∀a ∈ R)|a|+ |b| − |a + b| ≥ 0.

We shall apply Elim−algorithm, i.e. we shall calculate

(∗) Elim
(
(∀b ∈ R)(∀a ∈ R)|a|+ |b| − |a + b| ≥ 0

)
.

According to (8) we shall first consider expression |a|+ |b|− |a+b| as a−expression,
denoted by E(a). It has the form (1). The E−determiners are −∞, 0,−b,+∞.
The coresponding a−successors of inequality |a|+ |b| − |a + b| ≥ 0 are

|b|+ b ≥ 0, |b| − |b| ≥ 0, | − b|+ |b| ≥ 0, |b| − b ≥ 0.

Now applying (El1) to (∗) we obtain the equality
1Instead of this formula we can use the formula (∀a ∈ R)(∀b ∈ R)|a|+ |b| − |a + b| ≥ 0 too.
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Elim
(
(∀b ∈ R)(∀a ∈ R)|a|+ |b| − |a + b| ≥ 0

)

= Elim
(
(∀b ∈ R)|b|+ b ≥ 0

) ∧ Elim
(
(∀b ∈ R)|b| − |b| ≥ 0

)

∧Elim
(
(∀b ∈ R)| − b|+ |b| ≥ 0

) ∧ Elim
(
(∀b ∈ R)|b| − b ≥ 0

)
.

Now for each ∧−component we apply (El1). After a simple ’Elim-calculation’
for each ot them we obtain >. Consequently the Elim-result is >.

Example 3. The inequality (See [2])

(∗1) |a|+ |b|+ |c| − |a + b| − |a + c| − |b + c|+ |a + b + c| ≥ 0

holds for any a, b, c ∈ R.

Proof. In other words we should prove the formula

(∀c ∈ R)(∀b ∈ R)(∀a ∈ R)|a|+ |b|+ |c| − |a + b| − |a + c| − |b + c|+ |a + b + c| ≥ 0.

We shall apply Elim−algorithm, i.e. we shall calculate

(∗2) Elim
(
(∀c ∈ R)(∀b ∈ R)(∀a ∈ R)

|a|+ |b|+ |c| − |a + b| − |a + c| − |b + c|+ |a + b + c| ≥ 0
)
.

According to (8) we shall first consider the expression

|a|+ |b|+ |c| − |a + b| − |a + c| − |b + c|+ |a + b + c|
as a−expression, denoted by E(a). It has the form (1). The E−determiners are

−∞, 0, −b, −c, −b− c, +∞

The coresponding a−successors of inequality

|a|+ |b|+ |c| − |a + b| − |a + c| − |b + c|+ |a + b + c| ≥ 0

are

(∗3) |b|+ |c| − |b + c| ≥ 0, 0 ≥ 0, |b|+ |c| − |c− b|+ |b|+ |c| − |b + c| ≥ 0

|b|+ |c| − |b− c|+ |b|+ |c| − |b + c| ≥ 0, 0 ≥ 0, |b|+ |c| − |b + c| ≥ 0.

By (El1) the formula (∗2) is equal to

Elim
(
(∀c ∈ R)(∀b ∈ R)|b|+ |c| − |b + c| ≥ 0

)

∧ Elim
(
(∀c ∈ R)(∀b ∈ R)|b|+ |c| − |c− b|+ |b|+ |c| − |b + c| ≥ 0

)

∧ Elim
(
(∀c ∈ R)(∀b ∈ R)|b|+ |c| − |b− c|+ |b|+ |c| − |b + c| ≥ 0

)

∧ Elim
(
(∀c ∈ R)(∀b ∈ R)|b|+ |c| − |b + c| ≥ 0

)
.

Components 0 ≥ 0 are omitted, because their Elim−values are >. The re-
maining Elim−components are similar to that in Example 2, they can be easily
calculated, each of them is equal to >. Consequently the result for (∗2) is >, i.e.
the inequality (∗) is proved.
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Now we shall generalize the inequalities occuring in Example 2 and Example
3. These inequalities, written with quantifiers in front, are elements of Elim–class.
Consider expression E(x1, . . . , xn) of the following form

(9) A1|a11x1 + · · ·+ a1nxn + b1|+ · · ·+Am|am1x1 + · · ·+ am1xn + bm|
+B1x1 + · · ·+ Bnxn + C,

where Ai, aij , bi,Bj , C are any real numbers. We shall, by induction on n, prove that
formulas (∀x1, . . . , xn ∈ R)E(x1, . . . , xn)ρ0, where ρ is > or ≥ belong to Elim–class.

If n = 1 then obviously E(x1) can be transformed to form (1). By (El′1),
(El2), (El3) one can calculate Elim((∀x1 ∈ R)E(x1)ρ0), consequently in case n = 1
proof complets.

Let n > 1. Consider expression E(x1, . . . , xn) as an x1−expression, denoted
temporarily by E(x1) also. Easily one can transform E(x1) into the form (1), where
instead of x stands x1. The number k is the number of non-zero products Aiai1

where 1 ≤ i ≤ m. It is important that the coefficients A1, . . . , Ar and B are some
real numbers. However a1, . . . , ak, C can contain the variables x2, . . . , xn (but not
x1). Then E−determiners are −∞, a1, . . . , ak, +∞. Consider the cooresponding
successors

E(−∞, x2, . . . , xn)ρ0, E(a1, x2, . . . , xn)ρ0, . . . ,

E(ak, x2, . . . , xn)ρ0, E(+∞, x2, . . . , xn)ρ0.

To complete inductive proof it suffices to prove that the left-hand sides of all
successors are expressions of the form (9), where instead of n stands n− 1. This is
obvious for the successors

E(a1, x2, . . . , xn)ρ0, . . . , E(ak, x2, . . . , xn)ρ0.

Having in mind (7) we see that this is valid for the successors with respect to
−∞, +∞.

Now we shall estimate the number of steps for Elim when it is employed to
calculate formula (∀x1, . . . , xn ∈ R)E(x1, . . . , xn)ρ0, where E−expression is defined
by (9). Denote desired number by K. K is the number of all successors which
appeared during Elim−algorithm. In the first step the number of all successors
was k + 2. For k we have the inequality k ≤ m, where m is the number of | |-
subexpessions in (9). We shall call this m also m−number of the expression of the
form (9). One can easily conclude this fact:

During Elim−algorithm m−number of any successor is less of m−number of
its parent.

According to this we can roughly caclulate K in the following way:

At the first step we have at most m+2 successors. Each of them has at most
(m + 2) − 1 successors, and so on. Therefore, for K we have the following
inequality
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K ≤ (m + 2)(m + 2− 1) · · · (m + 2− n),

where n is the number of initial varibles x1, . . . , xn.

In such a way we obtained an estimate of K. Notice also that we count as
one step a calculation by which using (5) we find the corresponding expression of
successors related to −∞ and +∞.

In the sequell we state some generalizations of the results obtained until now,
including generalizations concerning Elim–algorithm. These generalizations will be
denoted by Gen1, Gen2, . . .

Gen1. Notice that variables x1, . . . , xn in all inequalities, considered until now,
run from −∞ to +∞. For the variables we can use any segment [p, q], where
p, q are given real numbers with p < q. Then, all previous assertions including
Elim–algorithm can be modified to the assumption x1, . . . , xn ∈ [p, q]. For instance,
Lemma 1 transfers to the following one:

Lemma 1∗. Let E(x) be an expression od the form (1). Then the following equi-
valence

(∀x ∈ R)E(x)ρ0 ⇔ E(p)ρ0, E(v1)ρ0, . . . , E(vr)ρ0, E(q)ρ0 (ρ is > or ≤)

holds, where v1, . . . , vr are all those ai which belong to the interval [p, q].
End of Gen1.

Gen2. Elim–algorithm can be generalized to class of some inequalities which con-
tain some unknowns, say a, b, . . . ∈ R. In such a case we use the following extension
of (El2) :

Elim(AρB) = AρB (ρ is > or ≥) A, B are some expressions.

To illustrate this we state the following example.

Example 4. Find all values for a, b, c such that the inequality a|x| + bx + c ≥ 0
holds for any real number x.

Solution. Temporarily denote a|x| + bx + c by E(x). We want to find all values
a, b, c ∈ R such that Elim(∀x ∈ R)E(x) ≥ 0 is >. The expression a|x|+ bx + c has
the form (1). The E−determiners are −∞, 0, −∞. The corresponding successors
are E(−∞) ≥ 0, E(0) ≥ 0, E(+∞) ≥ 0. By (El1) we have the following equality:

Elim
(
(∀x ∈ R)E(x) ≥ 0

)

= Elim
(
E(−∞) ≥ 0

) ∧ Elim
(
(E(0) ≥ 0

) ∧ Elim
(
E(+∞) ≥ 0

)
.

By (El3) and (El∗2) we have equalities:

Elim
(
E(−∞) ≥ 0

)
= a− b > 0 ∧ (a− b = 0 ∧ c ≥ 0) (by (5))

Elim
(
E(0) ≥ 0

)
= c ≥ 0

Elim
(
E(+∞) ≥ 0

)
= a + b > 0 ∧ (a + b = 0 ∧ c ≥ 0) (by (5))

So, the problem reduces to finding a, b, c satisfying the following conditions:
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(
a− b > 0 ∨ (a− b = 0 ∧ c ≥ 0)

)

∧ c ≥ 0 ∧ (
a + b > 0 ∨ (a + b = 0 ∧ c ≥ 0)

)
.

These conditions can be easily reduced to the following conditions

c ≥ 0 ∨ a ≥ |b|.

Obviously by the obtained conditions one can easily describe all desired values for
a, b, c. End of Gen2.

Gen3. One can consider expressions built up from max, min, sgn, ‖, . . . and may
seek those expressions which have properties like (2) and (3). By argumentation
similar to that applied until now one can obtain various new assertions. End of
Gen3.

Gen4. Real numbers are elements of a complete ordered field. In all assertions
and in all argumentations we have only used a part of axioms of such a field, more
precisely we have used only the axioms of an ordered field. Consequently, all results
in this article can be transfered to the case of ordered fields. End of Gen4.
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