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Abstract: This paper is a brief version of the monography [1]. The m-M Calculus
deals with the so-called m-M functions, i.e. functions of the form f:D — R
(D =[a,.b;] x...x [a,.b,], where n>0 is any integer and a.b. € R) subjected to the

following supposition:

For each n-dimensional segment A =[a,.p,]x...x [ .B, ]© D a pair of real
numbers, denoted by m(f)(A). M(f)(A). satisfying the conditions

m(fXA) < f(X)SM(f)A) (forall Ac D, XeA) (0.1)
Im(M(f YA)—m(fXA)) =0 (where diam A - (Z([i,: — QL )2)1’2) (0.2)
diam A—0

1s effectively given.

Such an ordered pair (m(f).M(f)) of mappings m(f),M(f) (both mapping the set of all
Ac D into R) is called an m-M pair of the function /. We also say that m(f),M(f)
are generalized minimum and maximum for [ respectively. For instance, with
only few exceptions all elementary functions are m-M functions (Lemma 1.2).

The conditions (0.1) and (0.2) are taken as axioms of the m-M calculus. A
logical analysis of these axioms is given here and, in addition to the other results, a
series of equivalences is proved which enable us to express some relationships for m-M
functions by means of the corresponding relationships fot their m-M pairs (see (2.2),
(2.5), (2.6), (2.7,). There are many various applications of the m-M calculus, such as

e Solving systems of inequalities, systems of equations (Section 1)

e Finding n-dimensional integrals (Section 1, Example 1.5)

e Solving any problem expressed by a positive < formula (Section 2), among others
Problem of constrained optimization (Problem 2.2, Problem 2.3)
Problem of unconstrained optimization (Problem 2.1)
Problems from Interval Mathematics (Problem 2.4)
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e Finding functions satisfying a given m-M condition (e.g. functional condition, or
difference equation, or differential equation. Section 3).

As 1t 1s well known, by the usual methods of numerical analysis, assuming
certain convergence conditions, we aproximately determige, step-by-step, one
solution of the given problem. However, applying the methods of m-M calculus we
aproximately determine all solutions of the given problem, and we assume almost
nothing about the convergence conditions. The solutions are, as a rule, sought in a
prescribed n-dimensional segment D. If the given problem, e.g. a system of equations,
has no solutions in D, then applying the method of m-M calculus this can be
established at a certain finite step k. The basic methodological idea of the m-M

calculus 1s:

It gives a sufficient condition Cond(A) which ensures that an n-dimensional
segment \ does not contain any solution of the considered problem P. Applying
repeatedly this criterion, we reject from the original n-segment ) those "pieces"
which do not contain solutions, so that in the limit case the remaining "pieces"
form the set S of all solutions of the problem P (if indeed there 1s a solution of P).

Keywords: The ideas ol m-M calculus are related to some techniques used in global optimization
|2,3,4] and interval mathematics [5], but the theory of m-M calculus has much wider range of
apphcation.

1. HOW TO FIND AN m-M PAIR OF A GIVEN FUNCTION.
APPLICATIONS

Let f: D — R, with D =|a,.b,]|x.x[a,.b, |c R", be a given m-M function. As the first
fact notice that from axioms (0.1), (0.2) follows that the function f must be
continuous. It 15 easy to see that in some sense the opposite assertion 1s also true.
Namely, if f: D — R is a given continuous function then one of its m-M pairs may be
defined by

m(f)A)= min f(X), M(f)A)=max f(X).
X e XeA

We point out that this formula can be effectively used in case of functions, monotone
in each of its arguments. For instance, we have the following assertion

Proposition 1.1. If [ [a,.b, | > R is a continuous monotone function then one of
its m-M pairs 1s determined by the equality

(1) m(f)A) = f(oy). M(f)YA)=f(B,) tf [ is nondecreasing or
(11) m(f)A)=f(By). M(f)A)=f(ay) tf [ is nonincreasing.

Next we list the following table in which / denotes the function defined by the
given expression and (m(f)(A). M(f)A)) is and m-M pair of f.
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Table 1.1
Function /| m(f)(A) | M(fXA) Under condition
C C C (' 1s a constant
X, Ve 13
X+ Xy Oy + 0Ly 'J)I +|.412
=Ir —ﬁ] —0t
1/ x, 1/ 3, 1/ o, oty.f3; > 0
X, * Xy MIN( oL 0Ly .06 3, - Max(ot 0ty .0ty [By.
ol oty f39) Uofdy 0y y)
minx, .x, ) min(oy .oy ) min(f3;.3)
max(x,;.x,) max (o, .oy ) max(f;.f)

In Table 1.1 Ais o, .3, | or [ogy .3, | % [oe, .3, |. Let us now denote by
Term(R.xj..... N = lf , €XP,S1n,cos, min,max) (=15

the set of all terms built up from the variables x,.....x,, simbols of some real

2Rk+1

numbers and functional symbols +, - —, , exp,sin,cos,min,max, where k£ > 0 may

be any natural number. Suppose that [ is a function defined by some term 1n the set
(1.1). How can we determine an m-M pair of /7 For instance, how to find an m-M pair
of the real function: x — sin(x)? In order to achieve this we shall apply this:

Proposition 1.2. Let /: [,.3, | > R be a function for which equality
- f(x)=g(x)-h(x) (x €la,.b;))

holds, where the functions g.h are continuous and nondecreasing. Then an m-M pair
(m(f)A).M(f)A)) (with A= [o,.B;] C [a;.b;] 1s determined by these equalities:
m(f)A) = glog) = h(PBy), M(f)A) = g(By)—Aloy)

By Proposition 1.2 and the equality sin(x) = (x + sim(x))— x we have the following results
m(sin) [ot;.B; |= oy +sin(oy) = By; M(si)[og, By |= By +sin(p)) — oy

Now we pass to the next basic idea. Namely, suppose that /, g are some given
m-M functions. Can we find m-M pairs for composed functions like [+ g, sm(/),
max(/.g) and so on? The answer is yes, and the following lemma ’speaks’ of it:

Lemma 1.1. Let the functions f.A;.....h),:D —> R and

G:[A,.By]x.x [A,.B,]> R (A, B, are given reals)

satisfy the following equality
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f(X)=G(h(X)....h, (X)) (for all X € D)

Suppose also that for all segments A ¢ D the inequalities

I
—

A < m(h )(A).M(h;)(A) < B. (i=1.... k) (*)

hold. Then one m-M pair of the function / is defined by the equalities
m(f)A) = (mG)Ym(h) (A).M(hy)(A).....mhy, )(A).M(h;)(A))

(*#)

M(f)A) = (MG)Y(m(hy (A).M(hy)(A).....m(h,)(A).M(h,)(A))

providing that all m-M pairs of the functions A,....h,. G occuring on the right hand

side of these equalities are known.,

Proof is ommited (see the proof of Lemma 1.3 in [1]|). According to this lemma and
Table 1.1 in the m-M Calculus we introduce the following recursive definition:

Defin‘ition 1.1.

(1) m(CYA)=C. MC)A)=C., (C i1saconstant)
m(x.)(A)=o,, M(x;XA)=p;. (=1...n)
(11) m(f +g)A)=m(f)A)+m(g)NA)., M(f+g)A)=M(f)A)+M(g)A).

(111) m(=f)(A) = =-M(f)A), M(-f)(A) = -m(f)(A).
(1v) m(f - g)A)=mn(m(f)A)+m(gNA). m(fYA)M(g)A).

M(fXA)M(ENA),M(f XA)M(gXA))
M(f g)A) = max(m(f)A)+m(g)A). m(f)A)M(g)A).

MfUAYM(GNA).M(fXA)M(g)A))
(V) mmmn(f,g)(A)=mm(m(f NA),m(gXA\))
M(mm(f.g)A)=mn(M(f)AN).M(g)A))
(V1) m(max(f,g)XA) = max(m(f)A).m(g)A))
M(max(f.g2)(A)=max(M(fYA).M(gXA\))
(vii)  m(*F VA =N A), MR xA) = 2#YM(fXA)
(vi1l) m(expf)A)=expm(f)A). Mexpf)NA)=expM(f)A)
(1X) m(smf Y A)=m(fUAN)-M(f)A)+smm(f)NA)
M(smfXAN)= M(fYAN)=m([ N A)+smM(f)A)
(x) m(cosf X A)=m(f XAN)—M(f XA)+cosm(fXA)
M(cosfYA)=M(fNA)—m(fXA)+cosM(fXA)

An immediate consequence of this lemma is the following:

Lemma 1.2. Let R* — R be a function defined by a term f(x,....x,) belonging to

set (1.1). This function 1s an m-M function. Employing Definition 1.1 one of its m-M
pairs can be effectively found in a finite number of steps.

In m-M calculus we shall frequently be concerned with dividing some given
segments of reals into certain smaller "pieces". In connection with this we introduce
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the so-called cell-decomposition of a given segment [a.b|c R. Any such decomposition
O 1s an infinite set of certain segments |a'.b |c|a.b]|, the so-called decomposition
cells, where to each cell one of the numbers 0, 1, 2, ..., the so-called order of the
decomposition, is described. In addition the following conditions are supposed.

Condition 1.1.

(1) la.b] € D

(11) For each! r € N there exists a finite number of cells in D of order r.
The segment [a.b] is the unique cell of order 0.

(111) The union of all cells of order ris [a.b].

(1v) The interiors of two defferent cells of the same order r are disjoint.

(V) If d(r) denotes the maximum of length of all cells of order r the

equality im__d(r) = 0 holds.
A cell-decomposition D is called a cell-tree if the following condition is fullfiled:

(Vi) For each cell C e Dof order r(> 0) there exists a unique cel C, , € D
of order -1 such that C . cC, ,.

One example of cell-tree is the so-called dyadie tree. Its cells of order r are segments
. |c |a.b] defined by the equalities of the form

a=a+k(b-a)-2 , B=a+kb-a) 2"

where £ can be any element of the set {0.1,....2" —1}. Notice that by the definition of

cell-decomposition for each decomposition O of the segment [a.b]| the following fact
holds:

Proposition 1.3. To each point x €[a,b] at least one sequence (C (x)) of r-cells* is
related such that the following condition (Vr € N)x € C (x). 1s satistied.

Any such sequence is called a cell sequence of x.

Definition 1.2. 1Y Let D [a.b] be a cell-decomposition of the segment [a.b| C R.
Then the set of all r-cells of the decomposition is denoted by D, [a.b|.

Let D=|a,.b,|x.x|a,.b,|cR" be an n-dimensional segment and let D [q;.b;] be
some cell-decompositions of the segments [a..b ] (i=1....n). Then the sets D.(D),
D) (r1s a fixed element of N) are introduced respectively by the following equalities:

n

D.D)={P x..xP [P e Bla,b)] ., P, e Ola. b1}, DD=U_5 O D)

' N is the set of all nonnegativé integers 0, 1, 2,...
2 Instead of "cell of order r" we say briefly "r-cell".
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Notice that the set (1.1) can be extended to the set

L ermi( by 50 X, .+..—. exp,sin,cos,min,max, 1/, arcsin, In, }';/_) (1.2)
which contains new functional symbols: 1/, arcsin, In, k\f, (R>1.ke N).

Under some conditions one can find an m-M pair for a function [ defined by a term
belonging to set (1.2) (see Definitions: 1.3, 1.4, 1.5 and Theorem 1.1 1n [1]).

Now we are going to give some formulas for m-M pairs in case of
differentiable functions (and complex regular functions).

Theorem 1.1. Let f:|a,.b;]> R be a given function belonging to the class

k‘l '
C" |a,.b,] where £ is some natural number. Suppose also that for any segment

- A =|o.By ] (with A c [a,.b])

fkr])

B(| f ) (A) (1.3)

denotes an upper bound of the modules of the (% + 1)-derivative? of f when x € A.
Additionally suppose that the following condition is satisfied

(k+1)

(Ve>0) (3K € R) (diamA <g = B(| f NA) < K) (1.4)

. . , . 3 : ! oL+ 3 3, —o
that is (1.3) is bounded if diam A — 0. Then, using notations y=—5—, p=—5— one

m-M pair of the function /is determined by the following equalities

r /'(”(Y) ; f’k+I k+1
m(fXA)=f(y)- ZI , l P - B(|f( . \)(43)
St (k+1)!
(1.5)
| S SR AR G e o
M(fXA) = f(y)+ 2 p - B |xa)

=1 1l (k+1)!

Proof is omitted (see [1]).

Definition 1.3. The m-M pair defined by (1.5) is called k-Taylor m-M pair of the
function /.

It 1s interesting that the formulas (1.5) can be generalized to the case of real functions
in several variables (see (1.20) in [1]) and also to the case of complex regular functions.
Namely, let f: D — C. D =[a,.b,;] x |a,.b,] be a given complex regular function, %
some natural number. Further, let

oL, +OL BB, - e ¢
A=log Byl xlogByl, v==g" +iTg", 20=((B1 - ay)” +(Bp —ap)")"

It suffices that x belongs to the interior of A only.
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Then similarly to (1.5) one k-Taylor m-M pair of the function | £(2)| can be determined
by the following equalities

b (1) | k+1
m(lf’)(l\)=|f(?)|—z| / _m ‘ p - : By
=1 L (k+1)
| ; l f(i)(y) | | pk+1 (1.6)
M(fXA) = |f(y)|+ Z———p + B, .,
= A (k+1)

(k+1)

where B, ,denotes an upper bound B(| f )(A) supposing that the condition of

the type (1.4) is satisfied.

Now we are going to state some applications of the notion of m-M function.
First, we will show how a given system of inequalities (particularly equations) can be

solved. So, let D =[a,.b,] x ... x [a,.b, |c R" be given n-dimensional segment and let
fi:D—> R(i=1....k) be given m-M functions. In connection with them we consider the

following system of inequalities
[0y -2, ) 2050 e (01 %) 2 0050 (assumingi(x:.....x ) € 1) (1.7)

Denote by S the set of all its solutions. In order to determine the set S we shall start
with some cell-decomposition D(D) (see Definition 1.2.). Assume for-a moment that
A=[og.By] x ... x [a,.B, ] 1s any n-dimensional subsegment of D. Generally such a
segment can satisfy just one of the following conditions 4

19 (Vi) M(f;)(A) =20, 29 @)M(f;)(A) <0

Obviously a segment A satisfying condition 2° cannot contain any solution of the
system (1.7). Accordingly, we introduce the following definition.

Definition 1.4. An n-dimensional segment Ac D is feasible in the sense of
system (1.7) if the following condition (Vi)M(f;)(A) = 0 is satisfied.

To this definition we add the following obvious remark.

Remark 1.1. If an n-dimensional segment A ¢ D contains a solution of system (1.7)
than A must be a feasible segment. |

In connection with D(D) for a fixed r e N denote by F. the union of all feasible
segments belonging to O, (D). Then about system (1.7) we have:

4+ Instead of M(f;)(A)20...M(f,)A)20, M(f;)(A)<0 or.. or M(f,)(A)<0 we have
written (VI)M(f;)(A) 2 0, (3))M(f;)(A) < O respectively.
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Theorem 1.2. The equality S =(], n F, 1s true.

Proof is omitted (see the proof of Theorem 2.1 in [1]).

Obviously Theorem 1.2 suggests an idea how to solve system (1.7), briefly said how to
find F. step-by-step. To improve such a procedure we can define the set F, ;as a
subset of the setF . This idea is used in the following solving procedure for system
0

Procedure 1.1. Solving procedure depends on a cell-decomposition DO(D). If we
want it to be a cell-tree then we can choose it in advance. Otherwise we determine
D,(D) during the solving procedure. Further, step-by-step we form a sequence (F))
whose each member F is the union of some feasible products P, e DO.(D). This
sequence 1s defined inductively as follows:

19 F, = D if D is feasible, otherwise F;, = 0.
20 Forany r € N: F, , = The union of all products P, € D (D) such
that P, is feasible and P, c F,.

If D(D) is a cell-tree then condition P,  F| is satisfied, according to the definition of

: . tl
a cell-tree. Otherwise, we should define D, [a,.b,],...., D, |a,.b, | In the (r+1) |

step so that the condition P | c F is satisfied.
If for some r € N we have the equality F,, = 0 then the procedure halts and S is 0.
Otherwise, the sets F. when r is getting greater and greater give better and better

approximations of the set S.

Notice that the sequences (F), (F') may differ but nonetheless the equality
N, nF, =N, ynF/ always holds. Besides that the sequences (F)) is monotone, for the
inclusions F, 5.5 F;f Sk , =... are satisfied. In general about the nature of the

procedure one may say the following:

Proposition 1.4. Using the fact that non feasible cells cannot contain any solution
we actually reject step-by-step various solution-free "pieces" of the given domain D.
Additionally, the non-feasibility criterion is so fine that every point (x,...x )e D,
which is not a solution, will be rejected at some step r. Accordingly if system (1.7) has
no solutions then at some step r all products P. ¢ F. will be non-feasible, which

implies the conclusion S = 0.

About system (1.7) we also add the following. For some products P, it may
happen that all inequalities m(f,)(P.) = 0...m(f,)(P.) =z 0 are satisfied. Obviously such
products must be subsets of the set S. Consequently we have the following definition.

Definition 1.5. An n-dimensional segment A c D is a solutional segment in
the sense of system (1.7) if the condition (Viym(f:)(A) z 0 is fulfilled.
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Besides this definition, the so-called indetermined segments are defined by the
following conditions

(YOM(f)(A) 20, (3om(f,(A) <0 - (1.8)

In others words, a segment \ C D is indetermined if and only if A 1s a feasible but not
a solutional segment. Using the notions of solutional and indetermined products the
solving Procedure 1.1 can be profoundly improved as follows.

Procedure 1.2. Step-by-step we form sequences (S ), (U ) whose members S, U,
are umons of some solutional, indetermined products P respectively. Their inductive
definitions reads:

1Y S, = D if D 1sasolutional product, otherwise S, = 0
[/, = D if D is an indetermined product, otherwise U, = 0
20 Forany re N

S, , = S, v The union of all solutional products P, |, c P,
{7, , = The union of all indetermined products P, , < P,

If for some r ¢ N we obtain the equality S, U =0 then the procedure halts and the
equality S = 0 1s true. Similarly, if for some r € N U, = 0 then the procedure halts too

and the equality S = S 1s true.

Otherwise, Le. if for every r ¢ N both relations S, U, =20, U,_ = 0 are fulfilled, the
sets S U when r is getting greater and greater give better and better

approximations of the set S,
Remark that the sequences (S ), (U ) have the following properties:
S c8..UcU,.,, F=8uU,. (r=01..)
Notice that one particular case of (1,7) is when it is a system of equations, like

fi(%1.....2,) = 0..... [ (%,....%,) =0 (1.9)

n fH

In such a case Definition 1.4 reduces to the following feasibility-definition:

Definition 1.6. A n-dimensional segment A ¢ D 1s a feasible set in the case of
system (1.9 the condition

(Yo)m(f UA) <0< M(f,)A)) (1.10)

15 satsfied.
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Letnow f: D — C (dim D = 2) be a given complex function and suppose that

at least one effective formula for m(| f |) is known (see (1.6)). Then solving the
equation f(z)=0 in z € D may be treated as solving the real equation |f(z)| = 0. Now

the definition of feasible segment A ¢ D reads:

A segment A c D is feasible in the sense of equation |f(z)]| = 0 (1.11)
if the condition m(| f| )(A) < 0 holds.

An important particular case is provided when / is a polynomial function
determined, say, by

f(z)=a,z" +-+ay (a, #0)

where a, .....a, are given complex numbers. Then a domain D =[-r.r| x [-r,r| which

contains all solutions of the equation f(z)=0 can be effectively found. For example,
by Cauchy's formula for the number r we can take

r=1+ max (|g;|/|a,]|) (1.12)
O t-n-1

Now, we give some concrete examples. We emphasize that generally fis(r) will denote
the number of all feasible products of r-cells.

Example 1.1. Equation sinx =1/x. xe[1, 20].

Let [a, B]lc[1, 20] be any segment. Then according to Definition 1.1. (ix) for the
function f(x)=smx-1/x one m-M pair is defined by

m(fllo,Bl=a+sina-p-1/a, M(f)a,B]l=p+smpfp-a-1/

By Procedure 1.1, using the feasibility Definition 1.6 and dyadic tree, the number
fis(r)of all feasible r-cells step-by-step up to r =25 is given in the following list (its
elements have the form ( step r, fis(r)).

(1,1), (2,2), (3,4), (4,8), (5,15), (6,16), (7,16), (8,15), (9,16), (10,14),
(11,14), (12,16), (13,16), (14,15), (15,15), (16,15), (17,17), (18,16),
(19,15), (20,15), (21,15), (22,15), (23,15), (24,15), (25,15)

As we see starting with the step 5 the number of all feasible cells fis(r) 1s about 16.
Consequently, according to Procedure 1.1, in these steps we should test about 16 - 2
(1.e. 32) cells only. For instance, exactly said, in the 20th step there are all together 22"

cells, but we should test only 30 of them. In the step 25 we obtain the following
numerical result:

The given equation has 7 solutions described as follows
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1.11415595 < x, <1.11415821; 2.77260345 < x, < 2.77260572
6.4391157 < x5 < 6.4391191; 9.31724286 < x, < 9.31724399
12.6455307 < x; < 12.64556341;  15.6439972 < x. < 15.6439983
18.9024819 < x, < 18.9024853.

Example 1.2. Complex equation in z = x + iy

28 +(A, +1B; )z7+...+(A0 +1B,) =0
where A, .B.....A,.B, are given real numbers.

All solutions lie in the domain [-r.r| x |-r.r| where r 1s defined by (1.12). Using
Procedure 1.1, definition of type (1.11) and dyatic trees, several equations are solved
up to 25t step. In all of them the coefficients were chosen at random. It is interesting,
that the numbers fis(r), when r > 6 are pretty small. Namely, in the 25th step this
number 1s always less then 15. We give concrete numerical results in the case when
coefficients A ; s ; are determined as follows

A, = -0.628871968 B, = -0.90620273
A, = 0655487601 B, = 0109498452
A = 0794467662 B. = 0145832495
A, = 0677786328 B, = 0.862459254
A, = -0.623235982 B, = 0945879881
A, = 0552867495 B, = -0.164039785
A, = 0.658555102 B, = 0.618662189
A, = 0934256145 B, = 0147878684

The solutions x; +iy; (j=1..8)are described as follows

-0.340724289< x, <-0.340724140, -0.793053508< y, <-0.793053359
-0.897440463< x, <-0.897440314, -0.308772177< y, <-0.308772027
0.385927558< x, <0.3859277070, ~0.954408497< y, <—0.954408199
1.117326470< x, <1.1173266200, -0.460661650< y, <-0.460661501
-0.310650319< x. <-0.310650170, 0.521920323< y. < 0.521920621
-0.707707405< x, <-0.707707107, 0.786857605< y, < 0.786857754
0.643312931< x, < 0.643313080, 0.492128873< y, < 0.492128879
0.738826841< x, < 0.738826990, 1.622191220< y, < 1.622191370

Example 1.3. Complex equation 1n z: e =z

In the domain [-20, 20] x [-20,20] this equation has 6 solutions x; +ty; (7=1,..6)

described as follows
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2.653191109< x, <2.65319228, -13.94920826< y, <-13.94920731
2.062276600< x, <2.06227899, ~ 7.58863215< y, <— 7.58863020
0.318130250< x, <0.31813264, - 1.33723736< y, <— 1.33723497

The calculations were done up to the 25th step (bisection way). Starting with the 6th
step the number fis(7)is about 16. For instance: fis(24) = 15. fis(25) = 16.

| . 3
Example 1.4. We consider the system in (x,y.z2)e Dc R
e’ +Xx+siny+cosz=p
3 sin ¥

x"+e " —-z-e =¢q

SI(x —2)+(x + y')” — V=Y —=2=T ( p.q.r are given real numbers)
Notice that in all cases stated below again dyadic trees are used.

Case 1: p=2¢g=0r=0.D=[1,2]x]-2,1]x[-3,2]. There is exactly one solution
(x,y.2)=(0.0.0). Starting with the: 6'h step the number fis(r)was between 40 and 50.
In the 24'h step we obtained the following result

~-0.00001525878910 < x < 0.0000247955322
-0.00002479553220 < y < 0.0000324249268
-0.00000762939453 < z = 0.0000114440918

Case 2: p=2.q=0.r=0.D =|-5,5]x|1,5]. Step-by-step the number fis(r)is 1, 8, 21,
32, 24, 0. Therefore, we conclude that the system has no solution.

Remark 1.2. This example illustrates one of the key features of the m-M calculus
generally:

If some problem has no solution in a given domain D then there exists a step
k such that fis(k)=0.

In order words, the non-existence of solutions can be positively established at some
step k.

We point out that part 4. of the Section 2: System of equations, system
of inequalities in [1]| deals with the feasibility problem.

Now we move on to other applications of m-M functions. So, in the Section 3,
of [1] 1t 1s stated how, under some conditions, one can approximately calculate a given
n-dimensional Riemann integral. We take Example 3.1 from [1]; here this is:
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Example 1.5. For the integral I: xydxdy where Cond(x,y) reads

”Cond(.r.y)

‘ - , & ‘ ‘ x+1 +1
0<x<20=<y<2 2+e-(x+y+2)=e¢ +e’

by using 4-tree we have the following results

Step 1: 0.0000000000000000< I £0.5625000000000000
Step 2: 0.0278320312500000 < / < 0.2424316406250000
Step 3: 0.0950307846069336< I <0.1581497192382812
Step 4: 0.1179245151579380< [ =0.1341890022158623
Step 5: 0.1239582093403442< I <0.1281216432544170
Step 6: 0.1255188694198068< I <0.1265613023800256
Step 7: 0.1259090350460332< [ <0.1261702301487544
Step 8: 0.1259090350460332< I £0.1259090350460332

Step 9: 0.1259090350460332< [ <0.1259090350460332

But, what would happen if Cond(x.y) has no solution in x.y? We emphasize that in
this case such a fact can be established at some step & of the calculating procedure.

Further, in the Section 3 of [1] it 1s stated how, under some conditions, one
can find an m-M pair of function defined by some integral (see (3.9) 1n [1]|) or by some
infinite sum (see (3.11) in [1]). In connection with this fact we state an example (this 1s
Example 3.2 mn [1]): |

Example 1.6. Let f be a function defined by

ey
f(x)= 2

I
=0 x+2

Concerning the equation f(x)=c¢ with a <x <b where a.b.c are constants we have
the following results (dyadic tree is used).

Case ¢c=15.a=0.b=1. In the step 20 we obtain the following double inequality
054416 < x < 0.04417
The numbers fis(r) (r = 1.2.....20)are in turn

152,38, 3,2,8,2,2,8,2:3 8,2, 3,18, 22, 2, :8520/8:t 210

Case ¢c=15.a=06.0=1.

Step 1: fis(1)=1; Step 2: fis(2)=1; Step 3: fis(3)=0.
Conclusion: f(x)=c¢ has no solutions.

Similarly, eoncerning the equation f(x) = x with a < x < b we have the following results
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Case a =0.b=1.In the third step fis(r)= 0, so the given equation has no solutions.

Case a=0.b6=2. The fis(r)(r=12....20) is 1 or 2. In the step 20 we obtain the
following double inequality 119055 < x < 1.190056 .

2. m-M PAIRS OF THE FIRST ORDER <, < FORMULAS.
APPLICATIONS

This 1s the crucial part of m-M Calculus. In the part we use the notion of the
first order <.< formulas. Briefly said®, these are the formulas built up from some
variables, the symbols of real numbers, symbols of some m-M functions f.g...., the
relational symbols <.< and finally the logical symbols A.v.—,V.3. For instance,

[(x)<g(x.y). sin(f(x)2gx)ngy)f(x)v(y)<glx),
(Vx ela,b))f(x)< f(y). (Vxela,b])(3yelc.d]) f(x.y)<2

are examples of such formulas. Since the quantifiers V.3 may occur in such formulas,
we introduce the notions of the free and bound variable. A variable, say v, i1s free in
some formula ¢ if v does not occur 1n some part of ¢ which has a form (Yv)(...)or a
form (Jv)...)where ( ... ) denotes the scope of the quantifier. For instance, x.y are free
variables 1in the formula (32)g(x.y) < g(x.z), while z 1s not free 1n it. A variable v 1s
bound 1if 1t 1s not free. So, in the last formula z is a bound variable.

As we know from Section 1 if we want to solve an inequality like
[(x)<0 (where x €l|a.b)) (*1)

then supposing that we use some cell-decomposition the basic idea is to use the
following implication

f(x)<0=m(f)C,.(x)) <0 (where r=01.2....) (*2)

Namely, according to (*2) we have had the definition of the feasible cell A: Ais
teasible <> m(f X \) < 0. Clearly, if A 1s not feasible then A contains no solution of (*1).
But, besides that we also have the following implication

M(f)C.(x)<0= f(x)<0 (*3)

which yields the following fact: if for some A we have the inequality M(f)(A) < 0 then
any element of such a A 1s a solution of (*1), i.e. this A is 'a solutional' cell. Both
implications (*2), (*3) can be written in this way:

M(FXC . (x)) =0 = f(x) S0 ="m(fNC () <08 r=0a.2e% (*4)

For details see (4.1), (4.2) in |1].
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Until now we have used the notation of the m-M pair, which is deeply related
to the ordinary notions of minimum and maximum. Besides that in m-M calculus we
use a more subtle notion; namely we introduce the so-called m(¢) and M(¢) where ¢
may be a first order <. < formula. For instance, if ¢ is the formula f(x) <0 occuring in
(*4) then the left hand and right hand side in (*4), 1.e. the formulas M(f) C.(x)=<0
and m(f)(C .(x)) <0 are M(¢) and m(¢) respectively. As a matter of fact, in order to
emphasize the number r and the cell C (x) instead of M(¢), m(¢) we shall use the
following denotations M (¢)(C (x))and m (¢)(C, (x)) respectively. Using these

denotations (*4) can be rewritten in the following way®
M, ($)C,.(x) =¢(x) = m,($)(C,.(x)) r=012. (*5)

As we shall in the sequel explain in general we have the following two facts:

First, for any first order <. < formula ¢(x,.....x, ) whose all free variables (2.1)

are among x......x_ one can effectively determine its
]

m

M ($)C, (x;)..... C.(x,)). m,_(da)(Cr(xl)......C,.(xm)).

Second, like (*5) the following double implication

) = ¢(xy.....x,,) = m, ($)(C,.(x)).....C.(x,,)) (2.2)

n

M, (¢)C,.(x)).....C (%

holds.

Notice that fact (2.1) is contained in Definition 4.1 from [1]. However, this definition 1s
rather technically complex. Here we shall explain (2.1) by means of some examples:

(1) Formula ¢(x) is f(x) < g(x). Then

m_($)(C,(x)): =m(f)C,(x) < M(g)C,(x))
M _($)(C,.(x)): = M(f)C,(x)) <m(g)C,(x))

The double implication of the form (2.2), i.e. the implication

M(f)(C (x)) < m(g)C,(x) = f(x) < glx) = m(f)C,(x)) < M(g)C,.(x))
is obviously true. Generally if ¢ is a formula of the form P <@ then:
m (§)(..)=m(P)(..) < M(Q)...) M, ($)...):=M(P)..)<m(@Q)...)

where the symbols ... stand for omitted arguments. The double implication of the form
(2.2) is true. We remark that in the previous examples the simbol < may be replaced

by <.

" Instead ¢ we wrote ¢(x) to point out that ¢ has a free variable x.
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(ii) Formula ¢ is a conjuction of the form oA f. Then (according to part (i1) in
Definition 4.1) we have:

m,(¢)..)=m,()Am,. (B) M,(¢)...):=M,(a)A M, (p)
For instance if ¢ 1s a formula f(x) < 0 A g(x) < 0 then:

mr((b)(Cr(x)) = m(f)((l'r(x)) <0n m(g)(Cr(x)) < ()
M _(p)(C (x)):= M(f)C, (x)) <0AM(g)C,.(x)) <0

We remark that in this example the symbol A may be replaced by v (which 1s related
to part (11) in Definition 4.1)).

(111) Formula ¢ 1s (Ix € [a.b|) f(x) < g(x). Then (according to part (v) in Definition 4.1)
wé have:

m (§p):=3XeD, ([a.b]))m(f)(X)<M(g)X)
M ($):=CXeD, (a.b))M(f)NX)<m(g)X)

where D, (|a.b]) is the set of all r-cells of the segment [a@.b]. Similarly, if ¢ 1s a
formula (Vx € |a.b]) f(x) < g(x) then:

m (¢): = (VX e D, (|a.b])m(f}X) < M(g)X)
M. (¢): =(VXeD, (a.b]))M(f)X)<m(g)X)

(iv) Formula ¢(x) is (Vy €[a.b]) f(x) < f(y). Then we have:

m ()C (x):=(VYe D, (a.b])m(f)C, (x))<M(g)Y)
M (p)C.(x):=(VY e D, (|a.b]))M(f)C (x)) < m(g)Y)

(v) Formula ¢(2) is (Vx € |a.b])(3y €|c.d]) f(x.y.2) < 0. Then we have:

m_(¢NC .(2):=(VXeD,[a.b])TY € D, [c.d])m(f (X xY xC,.(2)) <0
M ($)C.(2):=(VXeD,[a.b])3FY € D, [c.d)M(f(XxY xC (2)) <0

Next, notice that it is not dificult to prove (2.2) (see Theorem 4.1 in [1]).

Now, by means of two examples we shall see how one can practically use
double implications (2.2). In both examples the notion of a positive < — first order
formula will appear. Namely, a formula ¢ 1s < — positive if none of the symbols — |, <
oceurs 1n o.

Example 2.1. Determine all points x €|a.b] at which a given m-M function [ :
la.b|—|a.b]| attains its minimum.
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m-M solution. First, formula (iv) above corresponds to this problem. According to
(2.2) we have the following implication:

d(x) = (VY € O, ([a.0])m(f)(C, .(x)) < M(g)Y) (*1)

Next, assume that we use some cell-decomposition and A ¢ D, ([a.b]) is any r-cell (at

some step r). If A contains a point a at which / attains its minimum then we can
comprehed A as C, (a). Doing this way by (*1) we conclude that the sell A must satisfy
the following condition:

(VY e O, ([a.b])m(fA)<M(g)Y)

Related to this we introduce the notion of a feasible cell A:

Ae D, ([a,b]) is feasible if and only if (vY e D, ([a.b])m(fYA)<M(gXY)

Now clearly in order to solve the given problem we can use a procedure which is very
similar to Procedure 1.1 and Procedure 1.2. But, obviously the following question
appears: Can we by using only the sets of feasible cells obtain the set S of all solutions
of the given problem? The answer 1s yes, because a theorem like Theorem 1.2 holds.
The basic reason 1s: formula ¢(x) 1s < - positive (see (2.6) below).

We also add the following remark. We can optimize the described procedure
by 'diminishing tor loop (vY € DO, (|a.b]))' (see Problem 2.1 below).

Example 2.2. Is there any function y : [a.b|—|c.d | satistying the following equation
flx.p(x)) =0 (for all xe|a,b|) where a, b, ¢, d are given reals and / : |a,b]x|¢c,d| > R 1s a

oiven m-M function?
m-M solution. First, the following formula ¢
(Vx e [a.b]) @y e |c.dD(f(x,y) S0A0= f(x,y))

corresponds to the given problem. Clearly, the function \y exists if and only if the
formula ¢ is true. Suppose that we use some cell-decomposition of [a.b| x [c¢.d |. Then
like the example (v) above for formula ¢ we have the following m-M pair:

M ($):=(VXeD, ([a.b]))3Y e D, ([c.d D M(fXxY)<OA0<m(f)(Xx)Y))
m (¢p):=(VXe D, ([a.b])(3Y € D, ([e.d])m(f (X xY)<0AO0 = M(f)YXxY))

Then the double implication (2.2) reads: M (¢p) = ¢ = m (¢), where r =0.1.....

According to this implication we state the following procedure:

Procedure 2.1. Set r: = 0.

(1) Calculate M (¢). If M (¢) is true then go to (111), else calculate m (¢). If

m,.(¢) is false then go to (i) else set r: =r+1 and go (1)
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(11) Procedure stops and the answer is: the function \y does not exist.

(111) Procedure stops and the answer is: the function y exists.

Concerning this procedure there are two cases:

() The procedure stops at some step r.
() The procedure never stops.

In the case (j) we have one of the result (1), (11).

In the second case, since ¢ is a <-positive formula the answer is yes (see (2.6) below).
But, in practice in the second case by performing the Procedure 2.1 up to some 'big
number » we can 'approximatively' solve the given problem.

We also add the following remark:

If r 1s a fixed natural number then we can effectively (2.3)
calculate m (¢) and M (¢)

Indeed, let D, ([a,b])={A,...A,}, D,(c.d])={C....C_}, where p, g are some

constants. Then, for instance, for m_(¢)we have the following equality

2 q .
=1

Now suppose that

Prob is a mathematical problem expressed by some first order (2.4)
<, <-formulae ¢(xy.....x,,) (m 2 0), whose all free variables

are among x,....x,, . It is assumed that each variable v of ¢
has a given corresponding segment.

If m >0 let (x.....x
Then, to solve Prob means: find all values of x,.....x,, such that

m

)e D, where D c R" is a given m-segment.

14

the formula ¢(x.....x,, ) 1s satisfied.

If n =0 then, to solve Prob means: establish whether the
formula ¢ true.

We point out that the class of all problems Prob of type (2.4) is very wide. In
mathematics, particularly in numerical analysis, there are many problems of type (2.4),
For instance, Problems 2.1, 2.2, 2.3, 2.4, 2.5 (below in this section) belong to this class.
However, we also emphasize that there are a lot of problems of type (2.4) which until
now have not been treated in mathematics but m-M Calculus offers new means to do
this.

Now we are going briefly to describe how we can solve a problem of type (2.4).
First of all we should use some cell-decomposition. Namely, let all variables involved
in ¢, free or bound, be v,.....v,. Denote their segments by I(v;) (i =1.....t). Suppose that
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for each of them one cell-decomposition D(I (v;)) 1s chosen (see Definition 1.2). We
distinguish two cases: m=0 and m>0. If m =0 then according to (2.2) we use
Procedure 2.1. If n > 0 then according to (2.2) we introduce the notions of feasible /
solutional n-dimensional segment A. This definition generally reads (in fact this is
Definition 4.2 in [1]):

Definition 2.1. Let r € N be a given number and let P, = X, x...x X, be a Cartesian
product of some r-cells X. (with X; € D, (I(x;)) ). Then:

(1) The product P, is a feasible product in the sense of the formula
@(x;.....x, ) it and only if the condition m (p)(X,.....X )is satisfied.
(11) The product P, is a solutional product in the sense of the formula

¢(x;.....x, ) 1t and only if the condition M (¢)(X,.....X )is satisfied.

m

Having in mind Definition 2.1 and double implication (2.2) one can easily conclude the
following double inclusion:

Uroa. SreS@ e, F (2.9)

where S, is the union of all solutional products P ,F. is the union of all feasible
products P, and S(¢) 1s the set of all solutions of the formula p(x;.....x, ) (with
x; € (I(x;)). We point out that for each r=0.1.... M, (p)X,...X, ). m.(e)(X,....X
are finite expressions; consequently we can effectively find sets S _,F. (see (2.3)).
According to this fact we can describe a procedure by which we step-by-step calculate
the sets S _,F ; in other words in such a way we approximately solve a problem of type

m)

(2.4). Concerning (2.5) we emphasize that for some formulas the equality
Sh)=(_,, I (2.6)

can be true. For instance, this equality is true for positive < formulas. Recall, these are
the formulas which do not contain symbols <, —. Similarly, if ¢ is a positive < formula
(1.e. does not contain symbols <, — ) then we have the following equality

S()=()_y; S (2.7)

Notice that equalities (2.6), (2.7) appear in Theorem 4.4 from [1].

In the sequel we are going to state several problems for which one can use an
equality of the form (2.6).

Problem 2.1. Let f:D—> R (D=|a,;.b;] x...x[a,.b, ] beagiven m-M function. We
seek all points (x;...x,)e D at which this function attains the minimum value, i.e.

we solve in (xy...x,)e D the following formula ¢(x;...x,):
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(Vyy €lagsby ). (Y, €la, b, D) (X150 %) S [(Y10 Y0 (*2)

The formula (*2) is < positive, so we can use equality (2.6). Notice that the
corresponding procedure is similar to Procedure 1.1 and 1.2.

According to Definition 2.1 a product X, x . x X, is feasible in the sense of the

formula ¢(x,...x,)1f and only the condition

(VY; € D, |a,.b,])..(VY, € D, [a,.b,|) m(fXX; x.xX,)sM(f)XY; x..xY,) (¥3)

1s satisfied. This problem additionally has the following particular property:

Seeking the points at which the function f attains minimum in the (*4)
set D may be replaced by seeking such points in the set F_, where r = 0.1....

This fact can be used in the following manner

In the solving procedure we step-by-step replace the initial domain (*5)
D by the sets F, ,...,F _,... respectively.

Suppose now that

Function f has the first order partial derivatives [ ;1 /; (2.8)

n

and these derivatives are m-M functions.

Assume we know that function [ attains 1ts_ minimum at some point
(¢,.....c,) € IntertorD . Then to the feasibility criterion (*3) we may add the following
new requirements:

m(f, ) X, x..xX, <0< M(f,)(X; x..xX,) wherei=1,..n

/

which is related to the fact that the equalities f;l =0....f, =0 must be satisfied at the

rn

pomnt (¢y...c, ). We point out that such an property:

A possibility to add some new requirements to the general feasibility criterion

15 one of the nicest features of m-M calculus.

Remark 2.1. In m-M Calculus we usually use 'the cell-decomposition strategy'. But,
we can use another strategy as well. Here we shall state sketch? of a procedure LS by
which under some conditions one can find a local minimum or a saddle point of the
function / from Problem 2.1.

—

A complete version will be published separately.
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Let 6 be some positive real number, choosen arbitrarily. If (x...x,)e D
then by A(xj...x,.0)we denote the Cartesian product [x,-06,x, +8]x...x

|x, —o.x, +0]|. We suppose that /: ) — R satisfies the condition

o

W
UORITRNR Sot -1 o Ta ) o (-1
-I-vi

“n‘ ' n

Function / has the second order partial derivatives |/

derivatives are m-M functions in each A(x;...x,.0) where (x,...x,)e D .

In the procedure LS we shall use the following general fact:

Letg:|a—h.a+h|—> R be afunction having the first order derivative g'(x)
for every x € (a—h.a+h), whose modulus | g'(x) | 1s bounded by some positive
constant K. If g(a) > Othen g(x)> 0 for every x €|a-h .a+h' | where

h =min(h.g'(a)/ K)

In procedure LS we use the following constants, chosen arbitrarily:

S, .. - the maximum number of steps in the procedure
Mem € {01, .n |- an auxihary number.

Procedure LS (partly described in 'Pascal style') reads:
We start with an initial point (p,.....p,) from D).

R:=1; Fori: =1tondox; : = p:;
100: Mem : =0;

Fori: =1tondo
Begin

If £, (xy,...x,)> 0 then

Begin if x, = a, then Mem : = Mem+1 else
| x;:= x; = min(o, /; (X, ,...,xn)/M(l/:, X, D(A))

End

else /: (%¢,...,%,) < 0 then
Begin if x; = b, then Mem : = Mem+1 else

x;= a +min., fy (xy,....%, )/ M( £y, x, D(A))
End
else Mem : = Mem+1
End
If Mem = n then write ('Result 1s’, x,.....x, )

elseif k < S then Begink : = k+1; go to 100 Knd
else write ('Approximative result is', x,.....x, )
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It 1s supposed that we use the following general equality:

M(|g])(A)=max(m(g)(A)]|, M (g)(A)]), where g 1s X, %,

Problem 2.2. Let g.f,....f, : D > R, where D =[a,.b,|x..x[a,.b,] be given m-M
functions. Let A be the set of all points (x,.....x )& D satisfying the inequalities

P R - O U R A T (2.9)

Restricting the function g to the set A we seek the set S of all points (x,...x,) € A at

wich g attains the minimum value (the problem of constrained optimization
under the condition (x,....x )e D).

1V fy (eqsce s MR Do i (v Y20 (2.10)

::> é‘r(.xll ..... r ‘”) i g‘(‘y].“..‘}’!r)]

However, (2.10) treated as a conjuction of its parts 1Y and 2" is not a < positive
formula, since 2" is logically equivalent to this formula

(V(yl...uyn) € D)[ fl(.yl-"--yn)< Ov,.,v fk(}’] *'”-yn)'( 0 v g(‘xl““‘xn) S g(yl“"‘yn)]

Therefore in order to solve Problem 2.2 we cannot apply a procedure based on the
equality of type (2.7). In connection with this obstacle we put the following assumption

If at some point (x,....x, )€ D the inequalities (*1)

[ (%52, ) 2 D, L% a5t t )20

n

N\

are satisfied then in each neighbourhood N(x,.....x, ) of this point
there is a point (x, ...x, )e D satisfying the inequalities

[1(%1000s%p0) > Oseens 3 (%55 152 )50

In [1] using this assumption the following equivalence®

(YY) (YY) (YD) [ (01000 Y0 )20 g(X7 0 X)) S (0 0o ¥ ) (22)
is equivalent to the following < formula

(V31 (YY) [(YOL: (30 ¥p) > 0 = g(%7,.0.% ) S 8(F 305 Y ) ]

" Instead of (W€ laj-,bj D, (Ve {l,....k}) we write shortly (VY ;). (V1) respectively.
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is proved. Consequently, under assumption (*1) we have the following definition of
feasible Cartesian products of r-cells:

A Carteslan product X; x...x X, of r-cells X is feasible (2.11)

if it satisfies the following conditions®

(i) (Vie{l, .kY)M(f) (X, x...xX,)20
(i) (VY; € D, ([a}.by]) ... (VY, €D, ((a,.b ])

(Vie{l,.. . k}) ml0 (£ )i @qx XY ) >0
=> m(g)(X{x.xX )< M(g)Y,x.xY )

It is very important that similarly as in Problem 2.1 we can use the idea (*5) from
Problem 2.1 (where the symbol f is replaced by the symbol g). Further, under certain
conditions we may add new requirements to the feasibility criterion. So, suppose that
each of the function f,.....f,.g satisfies a condition of type (2.8) and the function g

attains the minimum value at some point, which is an internal point of the set A.
Then to the conditions (2.11) 1Y 29 we may add the following equations

;x—g - OGi—g =0 . Accordingly, the feasibility criterium should have also these
1 n
requirements

m—Qg—(Xlx---xXn)SOSMa—g(Xlx---xXn) (7="1"7))
ax,- 6xl-

Remark 2.2. If we replace (2.9) in Prqblem 2.2 by the following disjunction

et o R [l VAV 5 et g oSl

we get a new problem which can be solved in a similar way as Problem 2.2 (such a
problem belongs to the disjunctive-optimization problems).

Problem 2.3. We get this problem!! from Problem 2.2 by replacing (2.9) by the
following conditions

fil e D=0 B (e s, =0 (2.12)

" In the formulation of (ii) the tautology ( p v ¢) < (p=¢q) is employed.

- By mistake on this place in [1] stands M.

'! This is Problem 5.3 from [1]. There are some mistakes in it. For instance in the formula (*2) the
symbol = should be replaced by the symbol =. Next, in the last line of the condition (5.20) the
symbol = should be twice replaced by the symbol >. Also in the definition (5.22) the part

(VY € Sol (D))(M(f,,, Y)>0...M(f,XY)>0= m(g)(X)<M(g)Y)) should be replaced
by (VY € Sol (D)Ym(f.,,)¥)>0...m(f,Y)> 0= m(g)X)<M(g)Y)). Finally, the

first sentence after (5.21), i.e. the sentence :"It is important that the second part ... " should be

omitted.
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Now the set A is defined as the set of all points (x,....x, ) € D satistying (2.12). This
problem is more complicated than Problem 2.2. We shall describe two solving ideas.

The first idea. Denote by Sol (D) the set of all Y € D, (D) which have at least one

solution of the equations f(x,....x, ) =0.....f.(x,....x, ) = 0, Suppose that

\ 0. 0. . . g
For each r 2 r (r 1s a constant) we can determine the set Sol (D). (*1)

Further, on conditions (2.12) we put the following assumption (like (*1) in Problem
2.2.),

If £ > s and at some point (x,....x, ) € D the formulas (*2)

) = 0,enfy (Bpaeren X ) = 0, fon 1 (21 eris ) 2 Oy i (250000, ) 2 0

n S A 5N

[1(%7.0..%

are satisfied then in each neighbourhood N(x,...x ) of this point there is a point

(x,.-..x, ) € D satistying the formulas
[1( s a®n Y= O s i (B s s X Y= 00 Fe 5 (i s ) 10, o i (2 v-a By Ol

Using this assumption one can prove the following equivalence (like (*2) in Problem
2.2).

OV e Y ) € DD O 8 Y =105 1 gt =0 o (s 3, )2 055

1s equivalent to

(V(Yses0p) € DI F10d 15000 ¥5) = Osiiis [y (Fyoi- Y ) = 0, £ 1 (a6 ¥ ) > 0,
T o YOS B s X)) S (Y1)l

Then under the conditions (*1), (*2) for each r > P

definition

we have the following feasibility

An element X € Sol (D) is feasible if it satisfies the following condition (2.13)

(VY € Sol (D))im(f,  )Y)>0...(m(f,(Y)>0=m(g)X)<M(g)Y))

It is not difficult to prove that the set of all solutions of Problem 2.3 is equal to
(,-n &, . Also, we can use the idea like (*5) in Problem 2.1.
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However, the main problem is how to determine Sol (D). In other words how to find a
condition Cond(A)such that the equivalence

A cell A has at elast one
solution of the system < Cond(A)
[y st V=00 (et s ) =0

1s true. Roughly speaking, some "parts" of Cond(A)may be, for instance:

(J) A 1s "small enough".
(1) For each of the functions f;(1 <i<s) there are two vertices V, .V, of A

such that f,(V,)-f.(V,) < 0.

The second idea. By this idea Problem 2.3 can be solved approximatively. Namely,
let € > 0 be a given "small" real number. Replacing (2.12) by the following inequalities

£ R R o (6 G v 1 RO g PR iy o o O i (ol g e

from Problem 2.3 we obtain a problem of type as Problem 2.2.

Problem 2.4. This problem belongs to the Imterval Mathematics. Namely,
consider problem of type (2.4) supposing that in the formula ¢ some constants
Cy-Cy.....c; appear which we do not know exactly. Instead, we are given certain
constants L, .R. suchthat L. <c. < R, (1=12.....k). So we have the problem

Solve ¢(x;....x, ) In x; € I(x,)....x, € I(x,)where the constants (2.14)

¢ .....c; satisty the boundaries L. <c¢, < R, (1=1.2....k)

As we shall see any such problem can be translated to a problem of type (2.4). To
prove this, let us first consider problem (2.14) in case when m = 0. For instance, such

a problem is stated 1n

Example 2.3. Examine the truth of the formula (Vx €[1.4, 1.5|)x2 > 18... where
1.8... is a constant satsifying the boundaries 18 <18..<19

Solution. Obviously this problem. is logically equivalent to the following problem of
type (2.4) with m =0

Is the formula (Ve €[1.8, 1.9])(Vx € [1.4, 1.5]):'c2 > ¢ true or false.
In general a problem:
Is the formula ¢(c,.....c, ) with boundaries L, < ¢; < R; true or false

is logically equivalent to the problem
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Is the formula (Ve, €[L,.R,|)(Ve, €|L,.R,]) ¢(cy.....c;,) true or

false.

Now we shall consider problem (2.14) in case m > (0. For instance, such a
problem is encountered in
Example 2.4. Find x €[1, 2| such that x* = ¢, where ¢ 1s a constant with these
information 1.69 < ¢ <196 only.

Solution. Obviously the best information on x is expressed by the inequalities
13 < x <14. This conclusion can be divided in the following two implications

The first reads:

For all ¢ €[1.69, 1.96| the implication x=c,xe [1,2]=>13<x2<14 (*)
1s-true.

The second reads:

If x, with 13 < x <14, is any number then for some ¢ €[1.69, 1.96| (%%)

o 2
the conditions x~ = ¢, x €[1, 2] are true.

Notice that about (*) we have the following reformulations

(*) & (Ve e[1.69,1.96]) (x“ =c. x €[1,2]=>13<x<14)

& (3c €[1.69,1.96]) (x“ =c, x €[1,2))=>13<x<14
(By applying the following logically valid formula
(VeXa(e) = P) < ((Fe)alc) = P)
provided that ¢ 1s not a free variable in [3).

On other hand, about (**) we have
(**)  =((13<x<14=(3ce[1.69,1.96)) (x° =c. x (1, 2])

Combining the obtained results we have the following equivalence
l3sx<14 < (Jdc €[1.69, 1.96]) X = ¢, x €1, 2]

Consequently we have the following conclusion. The problem stated in Example 2.4 is
logically equivalent to the following problem:

Find x €[1, 2] such that the formula (3¢ [1.69, 1.96)) x° =c is true.

T'he reasoning employed in this example can be transfered to any (2.14) problem with
given boundaries L, < ¢, < R.. Namely:
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Any (2.14) (m > 0)problem with given boundaries L= oS RI(=100 k)
1s logically equivalent to the following problem of type (2.4):

Find all values of x; € I(x.) (2=1.....k) such that the formula
(3e; €[Ly.R, ] ... Gy, €[L,.R,]) ¢(c,

1s satisfied.

Example 2.5. Find z€[-7,25] such that the condition (Vx €[0,4]) (3y €][3,5])

2 2 : :
y —x =z 1s satisfied.

Solution. The ordinary binary trees are used. The calculations are carried out only

up to step 7. The number of feasible cells is 2 in each step, and z satisfies:
870 <2<925.

3. FINDING FUNCTIONS AS SOLUTIONS
OF A GIVEN m-M CONDITIONS

Let ¢(x.y)be. a positive < formula, quantifier-free, and whose free variables
are x.y. Replacing y by a term f(x), where [ 1s a function symbol from the formula
p(x.y) we obtain

p(x,f(x)) (3.1)

which we shall call "an m-M (functional) condition". Let A.B c R be given segments
and /: A —» B a function satisfying the condition (Vx € A) ¢(x.f(x)). Then we say that

/ 1s a solution of condition (3.1). In the sequel we are going to describe a prdcedure by
which one can step-by-step approximatively determine all such functions (if any
exists). We shall use the following denotations

4 X will be a sequence of some subsegments (1.e. cells) of the segment A. By /(X))

1s denoted the number of its elements.
If P € X then by F(P). F,(P) will be denoted some sequences of subsegments

of the segment B; I[(F(P)). l(F,(P))are the numbers of their elements.

We also use the following convention:

Two segments of the forms | p.q|, [r.s] are called neighbouring if g = ror
Si=NnY

In fact in the procedure we search certain solution x € A,y € Bof ¢(x,y), having in
mind that y should be a function of x. The procedure reads:
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(1)

(11)
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If m(p) A x B)is false the procedure stops and the result 1s: (3.2)
(3.1) has none f-solution.

In the opposite case we take:
I(X)=1.X,=A.l(F(A)) = 1. B 1s the unique element of F(A);

and go to (11).

In turn we take P =X, (1<i<[(X)) and for each of them we do
the following:

From sequence F(P) we form a new sequence F,(P)consisting of all

elements @ € F(P) for which the condition m(pX P x §) holds. If the
sequence F|(P)is empty then the procedure stops and the result 1s:

(3.1) has none f-solution.

In the opposite case we first 'make unions of all neighbouring ele-
ments of the sequence F, (P) and in such a way we obtain a new sequ-
ence, which we call F, (P)againl=.

After P = X, y 1s being processed we go to (ii1).

(111)

In this step we have already determined the desired function / approximatively

Namely, for any x € A let P © X be a segment containing this x. Then f(x)
may be any number which is any element of some element of F,(P).

If we want to continue the procedure then we do the following:

First, for each P = X. (1<i<[(X)) we do the following:

We decompose P into smaller subsegments, say P,....P and temporarily ex-
tend the function F| by the conditions

F\(P)=..= F(P.)= F,(P)

Let X, be the sequence of all such subsegments for all elements P e X .
Next, in turn to each element P e X, we consider the related sequence
F,(P)and decompose all its elements into some smaller subsegments. In such
a way from F,(P) we obtain a new sequence named F(P). We put X = X |
and go to (11).

12 . . .
For instance, if F|(P) is the sequence [1,2], [7,8], [2,3), [6,7], [3,4], [9,10] then the new F, (P)
is the following sequence [1,4], [6,8], [9,10]. |
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In a sumilar way one can approximatively solve any functional condition like (3.1)
under this restriction:

All unknown functions have the same number of arguments.
For mstance, the functional conditions ¢(x.f(x).g(x)). Wx.y.h(x.y).k(x.y).m(x.y))

where [ g h. k.m are unknown functions belong to this class. However, the functional
condition

plx, f(x)y.g(x.y)) (3.3)

obviously 1s not a member of the class. Solving procedure for such conditions in some
details differs from Procedure (3.2). For example to solve (3.3) we proceed as follows:

We replace (3.3) by the following functional condition ¢(x.f,(x.y).y.g(x.y))

with two unknown functions f,.g . Then using a Procedure like (3.2) we seek those of
its solutions which are solutions of (3.3) too. Namely, suppose that in some step for x
and y we have all together the following subsegments

Bt Nl

respectively. Let P = X, be any of these X,.. . X P To define the sequence F(P) we

consider all sequences

(*) F\(P.Y)). .F(PY,)

and then: any subsegment |a.b| 1s an element F(P) if and only if this subsegment
belongs to each member of the sequences (*). If F(P) is empty sequence the procedure
stops with the conclusion that (3.3) has no solutions.

Let now ¢(x.y.z) be a positive < formula, quantifier-free, whose all free
variables are x.y.z. Replacing y.z by the following terms f .f, , respectively from

the formula ¢ x. v z) we obtain

- (h 15 a gaven positive constant) (3.4)

which we are going to call "an m-M difference condition”, Concerning (3.4) the problem

15

Let a.a’.b (with a < b) be some given real numbers. Giving to x and [, (3.5)

initial values a.a' respectively determine a finite sequences (1f any exists)

/;l',;']'h' 'f;'l*ﬂh (a+nh 15 b)

such that (3.4) is satisfied for every x e {a.a+h...a +(n-1)h |.
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In the sequel we shall describe a procedure by which one can approximatively

determine all such sequences!?, under the restriction that f .f ,...f ., belongto a

given segment B c K.
As a matter of fact problem (3.5) is logically equivalent to the following:

Solve for f ,....f ., € B the system (3.6)

pla.a’. fain)

pla + h~fa+h '~fa+2h )

pla+(n - Uh'fmlu l‘ih*ﬁnnh)

The procedure reads:

Using a procedure like Procedure 1.1 we approximatively solve for!4 £, the (3.7)

first formula, i.e. the formula ¢(a.a’.f. ,).In such a way we obtain as the

a+h
result some set F_ , -union of some subsegments of the set B. Next, we go

to the second formula ¢ (a+h.f,  ,.f  5,) which we shall solve for f ,,

under the assumption /. ,, € F_ , . In other words!®, we need to solve for

f. .., € B this formula

(Aye F, )pla+h.y.f . on)

Agan we apply a corresponding procedure!® and for /. ,, we determine some
set f ., -union of some subsegments!? of the set B. Similarly we proceed with
the remaining formulas @(a +2h.f_ o). f, 34 ) @@+ =Dh.f 0 1n-Fainn)-

5o, solving the formula

Ay € Fo on )W a+2h,y.fq,3p)
we obtain the set ¥, ; solving the formula
(3_}’ € Fa +3h )(p((l T 3h‘y‘fa+4h )

we obtain the set F_ ., and so on. Finally, the desired sequence is approximatively

determined by these conclusions:

fa =a‘fa+h el avh>’ fﬂ nh € F a+nh

|3 o n |

Il any exists
14 e - . L .
['his means that we use the solving procedure up to some step r, and this r is of our choice.
See Problem 2.4, Example 2.4,

[h ' . .
Up to some step r, r is a number of our choice.

1 5

In fact, they are corresponding feasible cells.
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Of course, it can happen that for some i the set F. is empty, when the procedure
should be stopped with the conclusion that the desired sequence does not exist.

We point that besides (3.4) one can in a similar way solve various other difference
conditions like o(x.f, .f. ,.f, . o, ), and so on.

In this part we state a procedure by which one can approximatively solve a
given differential equation. Let

E(x.f(x).f (x))=0 (3.8)

be a given differential equation having a solution f: A —» B. Denote by C a set with

the property
f(x)eC whenever x € A

Suppose that there exists f'(x) for x € A,and that the function E(x.y.z) (with x € A,
y e B.z e () is differentiable. Additionally suppose

There are positive constants K,.K, such that (3.9)

oF
= sndas G| S Ky

0z

foreveryxe A, ye B.ze C.

Then one can immediately prove the following assertion

If x and x + A (with A > 0) are any elements of A then the inequality

(x+h)-f(x))
Sk “x)J < K,K,h (3.10)
h

(
E Lx.f(x).

holds.

From inequality (3.10) one can easily get an idea for solving equation (3.8). Namely,
first suppose E(x.y.z) is an m-M function. Then to (3.10) one can assign the

corresponding m-M difference condition, say expressed in this manner!®

( 1 )
ELx.f(x).;(fhh -fj,.)J < K,K,h (3.11)

| & o
Now, fis used as a sequence-symbol.
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In such a way we obtain an example of the difference condition of type (3.4).

Consequently we can apply a procedure of typel?(3.7). Of course, in order to do this we
oE

have to know the constants K,.K, in advance. About K, it suffices to suppose that
| 02

is an m-M function. To find K, briefly said, one can besides equation (3.8) employ the

equation
ol oOF ol
f f
+ “F + /\T — 0
0z oy = 02

At the end we emphasize that by solving difference condition (3.11) we in fact
approximatively determine all solutions of differential equation (3.8) with initial
condition f(a)=a . But, if solving procedure halts then we conclude that equation
(3.8) has none such solution.
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The numbers a,b are determined by the set A, while a .A (with @ € B. h > 0) are of our choice.



